Este hallazgo ocurrió gracias al estudio de restos de microrganismos que vivieron en el pasado y se conservaron en el registro geológico.

Los avances más recientes de esta investigación que realiza un grupo internacional de 32 expertos de 17 países se publicaron hace unos días en la revista Nature.

El asteroide que se estrelló en la Tierra hace aproximadamente 66 millones de años fue responsable de la quinta extinción masiva: provocó la desaparición de los dinosaurios y del 76 por ciento de la vida en todo el planeta. La huella de este asteroide quedó plasmada en forma de cráter en la costa de la Península de Yucatán. En la zona de impacto y a dos mil kilómetros a la redonda, la devastación fue total. Sin embargo, estudios recientes revelan que el ecosistema prosperó apenas transcurridos 30 mil años, una recuperación muy rápida desde la perspectiva del tiempo geológico; un hallazgo que ha causado una gran sorpresa, según anunciaron los investigadores Ligia Pérez Cruz y Jaime Urrutia Fucugauchi, del Institutito de Geofísica de la UNAM.

Esta investigación en el cráter Chicxulub ha causado mucho interés y se ha vuelto “taquillero” por su relación con la extinción de los dinosaurios, dijo Urrutia Fucugauchi, quien agregó que en un principio los trabajos que se realizaron en la zona se enfocaron en la dinámica y en los efectos del impacto en varios niveles y áreas de estudio.

El expresidente de la Academia Mexicana de Ciencias señaló que además de investigar los mecanismos de extinción y las causas que ocasionaron la desaparición de organismos, ahora “hemos pasado a estudiar las condiciones en la que los organismos pueden sobrevivir a una extinción de este tipo y sus efectos globales; qué ocurre con las extinciones secundarias y qué sucede con un ecosistema fragmentado (tres de cuatro especies desaparecieron)”.

El interés de este trabajo está justo en el sitio de impacto, donde se presentaron efectos adicionales a diferencia de lo que sucedió en los ecosistemas alejados. En dicha zona los organismos desaparecieron porque hubo temperaturas de miles de grados, ahí el ecosistema desapareció en superficie y en profundidad. “El sitió quedó prácticamente estéril a la vida, eso hace que sea interesante de estudiar”, dijo Jaime Urrutia.

Los recientes hallazgos
De acuerdo con Pérez Cruz, en el artículo publicado el 30 de mayo en la revista Nature con el título Rapid recovery of life at ground zero of the end-Cretaceous mass extinction se hace referencia a la pronta recuperación de la vida a finales del Cretácico, cuando ocurrió esta extinción masiva. Para esta investigación fue necesario, recordó la investigadora, realizar una perforación en el sitio M77A, a 20 kilómetros de Puerto Progreso, Yucatán, de donde se extrajeron los núcleos de roca —a una profundidad aproximada a los mil 400 metros— para ser estudiados.

En estos núcleos fue posible analizar pequeños microorganismos que quedaron atrapados en las rocas y se conservaron en el registro geológico. “Tres fueron los indicadores utilizados en este estudio: foraminíferos, nanoplancton calcáreo e icnofósiles (restos fósiles)”, señaló Pérez Cruz.

Este estudio, explicó la oceanógrafa, es resultado de la expedición 364 del Programa Internacional de Descubrimientos en los Océanos (IODP, por sus siglas en inglés), que entre sus objetivos es averiguar cómo fue la recuperación de la vida en la zona del impacto, qué pasó después y cómo se pudo recuperar la vida y el tiempo que se tomó en hacerlo.

“La ventaja de los organismos que nos sirven de indicadores es que en pequeños fragmentos de roca podemos encontrar cientos de estos ejemplares para hacer cuantificaciones y reconstrucciones para resolver estas preguntas de investigación”.

Los investigadores apuntaron que los diminutos fósiles y el rastro de ellos, son evidencia contundente de que los organismos habitaban la zona del cráter, pero también son un indicador general de la habitabilidad en el medio ambiente años después del impacto.

El núcleo 40, que se obtuvo a 616 metros de profundidad de la perforación, es el que marca el intervalo Cretáceo/Paleógeno y la extinción masiva. Fue clave para el estudio de los microfósiles. Ahora los científicos trabajarán en afinar la tasa de sedimentación y gracias a “los datos geoquímicos que se están produciendo ya tenemos más información al respecto”.

Ligia Pérez informó que de gracias a los estudios que se han hecho del asteroide que se estrelló en la Tierra ahora se sabe que: la fuerza de impacto fue 7 millones de veces más grande que la explosión de la bomba nuclear más poderosa en el mundo; que el material fragmentado salió disparado a velocidades mayores de 9.8 kilómetros por segundo; que en la parte central de la cavidad del núcleo se formó en pocos segundos una estructura más grande que el monte Everest —de 8 mil 848 metros de altura— , que posteriormente se desplomó; que más del 76% de la biodiversidad se extinguió, lo que marcó la quinta extinción masiva en el planeta; y que los animales que sobrevivieron a dicho impacto pesaban menos de un kilo —en el caso de los mamíferos—.

Y lo más reciente que se encontró fue la primera evidencia de la aparición de la vida tras el impacto. Después de 30 mil años del choque hubo un ecosistema próspero presente en el cráter con fitoplancton floreciente (algas microscópicas) que soportaba una comunidad diversa de microfósiles en las aguas superficiales y en el fondo marino. En contraste, otras áreas alrededor del mundo, incluyendo el Atlántico Norte y otras áreas del Golfo de México, tomaron hasta 300 mil años para recuperarse de manera similar.

“La lección que podemos obtener de esto es que todas las investigaciones del cráter de Chicxulub permiten conocer sobre la evolución de los sistemas planetarios, los cráteres de impacto, los cambios globales, pero también la manera de cómo la vida se reinventa y resurge sin importar qué tan adversas sean las condiciones”, concluyó Pérez Cruz.

 

Publicado en Tecnologia

Ciudad de México. 24 de mayo de 2018 (Agencia Informativa Conacyt).- La Unión Astronómica Internacional (IAU, por sus siglas en inglés) otorgará el reconocimiento IAU PhD Prize 2017 a la mexicana Gisela Noemí Ortiz León por su tesis de doctorado Astrometría ultraprecisa con interferometría de muy larga base en el centimétrico y milimétrico, realizada en el Instituto de Radioastronomía y Astrofísica de la Universidad Nacional Autónoma de México (UNAM), campus Morelia.

Bajo la supervisión del prestigiado científico Laurent Loinard, profesor de dicha casa de estudios, la investigación de la entonces becaria del Consejo Nacional de Ciencia y Tecnología (Conacyt) consiste en el estudio de la posición de los astros para determinar sus distancias y movimientos.

Los resultados más destacados de la tesis doctoral se centran en dos líneas principales de investigación. La primera es su participación en el proyecto Gould’s Belt Distances Survey (GOBELINS), en el cual se logró la determinación de mayor precisión hasta el momento de las distancias hacia las regiones de formación de estrellas.

En entrevista, la especialista explicó que uno de los fenómenos que hoy en día intriga mucho a los astrónomos es la formación y evolución de las estrellas. Se piensa que las estrellas como el sol se forman de la acumulación de gas y polvo interestelar que abunda en ciertas regiones de la galaxia, denominadas regiones de formación estelar, y su estudio, así como la determinación de sus propiedades físicas, representa un paso hacia el entendimiento de la formación de nuevas estrellas.

“En mi tesis doctoral hice mediciones para determinar con la mayor precisión posible —estamos hablando de un margen de error de uno a tres por ciento— la distancia respecto al sol de varias estrellas que aún viven en sus regiones madres. Estas mediciones me permitieron derivar varias propiedades de dichas regiones, como por ejemplo su profundidad, así como el movimiento de las estrellas dentro de las regiones estelares”.

Esta precisión fue posible gracias a que se utilizó el arreglo de líneas de base muy largas (VLBA, por sus siglas en inglés), un interferómetro conformado por 10 radiotelescopios situados a lo ancho del territorio de Estados Unidos y que tiene la capacidad de medir la posición de estrellas con gran precisión.

La segunda gran aportación que hizo Ortiz León en su tesis de doctorado fue la primera observación del agujero negro en el centro de nuestra Vía Láctea, que utilizó la técnica interferométrica con el Gran Telescopio Milimétrico (GTM) y el VLBA, esto con el objetivo de formar virtualmente un telescopio de tamaño continental.

“Utilizamos este gran arreglo para estudiar la luz a una longitud de onda de tres milímetros y determinamos que el tamaño físico de la región donde se produce dicha radiación es unas 14 veces el tamaño del horizonte de eventos (equivalente a 1.2 unidades astronómicas)”.

Este resultado representa un paso hacia el objetivo final del proyecto del Telescopio del Horizonte de Eventos (EHT, por sus siglas en inglés), donde los científicos esperan conseguir la primera imagen de la vecindad cercana del agujero negro.

“Gracias a la investigación desarrollada en mi tesis, ahora sabemos que con el GTM es posible ver el agujero negro en tiempo real y detectar estallidos de radiación que ocurran cerca del horizonte de eventos debido a posibles incrementos en la caída de materia hacia el agujero negro”.

Una joven estrella

Para Gisela Noemí Ortiz León, quien actualmente realiza una estancia posdoctoral en el Max Planck Institut für Radioastronomie, en Bonn, Alemania, recibir este galardón representa un reconocimiento al trabajo que realiza en conjunto con un gran grupo de investigadores de México, Estados Unidos, Brasil y Chile, sobre el estudio de regiones estelares.

“Mi investigación sobre las distancias a estrellas jóvenes es un fragmento de un proyecto mayúsculo (…) Para mí, el premio de la IAU es un reconocimiento al valor científico de la investigación desarrollada por nuestro grupo de trabajo, y una gran oportunidad para que astrónomos en todo el mundo se enteren de nuestros resultados y puedan aplicarlos en sus propias investigaciones”.

Resaltó que si bien medir la posición de estrellas para determinar su distancia y movimientos ha sido un estudio clásico en astronomía, aún hay mucho por descubrir y, por lo tanto, es una de las ramas más activas.

 

 

 

 

Publicado en Tecnologia

Rafael Navarro, del Instituto de Ciencias Nucleares, es el único mexicano en el proyecto de la NASA para el diseño, construcción y análisis de datos del laboratorio portátil Sample Analysis at Mars, el corazón del robot.

El agua que tuvo Marte hace tres mil 800 millones de años era similar a la que bebemos en la Tierra; sus rocas, formadas por lodos de un lago, son ricas en hidrógeno, carbono, nitrógeno, oxígeno, fósforo y azufre, necesarios para la vida como la conocemos, dijo.

Curiosity ha llegado a una zona de arcillas que pueden atrapar materia orgánica y preservarla. Esto podría responder a la pregunta de si hubo vida en el planeta rojo.

Desde su llegada a Marte, en agosto de 2012, y hasta la fecha, el robot explorador Curiosity ha visto poco más de dos mil soles; es decir, ha pasado más de dos mil días con sus noches en el planeta rojo, lo que implica casi seis años de trabajo constante para el mexicano Rafael Navarro, del Instituto de Ciencias Nucleares (ICN) de la UNAM.

Pero Navarro se unió al proyecto de la NASA en 2004 para el diseño del laboratorio portátil Sample Analysis at Mars (SAM, o Análisis de Muestras en Marte), que es el corazón del robot Curiosity; así, el investigador universitario lleva 14 años de su vida dedicados al diseño, construcción y análisis de datos.

“Ha sido una experiencia emocionante en todos los sentidos”, enfatizó Navarro, uno de los especialistas que desde el Laboratorio de Química de Plasmas y Estudios Planetarios del ICN recrea los experimentos realizados por la máquina en Marte.

Cada día, Curiosity vaporiza muestras del suelo marciano y manda los datos a la NASA, mismos que son retomados por investigadores de la UNAM, de Estados Unidos y de Europa, quienes además de reproducir los experimentos, comparan los resultados y discuten sobre lo que encuentra el robot durante su exploración.

En los dos mil días que ha pasado en Marte, ha recorrido 19 kilómetros desde su llegada a las faldas del cráter Gale hasta el monte Sharp, en donde está actualmente, a 180 metros de altitud.

“El estado de salud del robot es bastante bueno, con la capacidad de seguir explorando el ambiente marciano probablemente hasta finales de esta década o principios de la siguiente”, estimó el único mexicano en colaborar en la misión Curiosity.

Durante su travesía, Curiosity, y el equipo de científicos en la Tierra, han realizado importantes aportes: el agua que tuvo Marte hace tres mil 800 millones de años era similar a la que bebemos en la Tierra; sus rocas, formadas por lodos de un lago, son ricas en hidrógeno, carbono, nitrógeno, oxígeno, fósforo y azufre, elementos necesarios para la vida como la conocemos.

Además, se confirmó la presencia de sales de perclorato, que si bien impiden la detección de compuestos orgánicos de manera directa y pueden tener un efecto tóxico para los humanos, hacen posible atrapar el agua de la atmósfera; así, se podría colectar el líquido en Marte sin tener que llevarlo de nuestro planeta.

De igual manera, se han medido los niveles de radiación en la superficie marciana y se ha encontrado que exceden los niveles permitidos para los astronautas; entonces, los que viajen deberán hacerlo con trajes especiales para evitar daños.

El robot explorador lleva consigo varios equipos de medición, pero uno de los más valiosos es SAM, en el que participa Navarro González; tiene una especie de horno que vaporiza las muestras de suelo, además de un laboratorio químico que procesará otras muestras en el futuro.

SAM ha contribuido a analizar la atmósfera y a saber que, en el tiempo en que había vulcanismo, ríos y agua líquida, “era mucho más densa, probablemente parecida a la que tenemos en la Tierra; además, había mayor cantidad de agua que fluía por lagos que pudieron existir hace millones de años”, explicó el también colaborador de la Agencia Espacial Europea.

Estos datos son clave para proyectos gubernamentales y privados de exploración humana. “Después de casi seis años, Curiosity ha logrado llegar a una zona rica en arcillas, importantes porque se forman en presencia de agua líquida y tienen propiedades para atrapar materia orgánica y preservarla. Esto representa un ambiente en donde podremos estudiar si hay compuestos orgánicos y responder a la pregunta de si hubo o no vida en Marte”, remarcó el especialista.

La misión en general es altamente valiosa para la NASA, que ya ha extendido el periodo de operaciones de Curiosity por tres años más, y para 2020 espera enviar un nuevo robot explorador que tomará muestras del suelo para ser traídas directamente a la Tierra.

 

Publicado en Tecnologia

Ciudad de México. (Agencia Informativa Conacyt).- Mientras que en México el 25 de abril a medio día aún había una efervescencia política luego del primer debate de los candidatos presidenciales y en Estados Unidos el mandatario Donald Trump incendiaba las redes sociales con elogios al presidente francés Emmanuel Macron por su visita al congreso norteamericano, en Tsukuba, Japón, ya eran los primeros minutos del 26 de abril y se iniciaba una nueva era en la física de altas energías al registrarse la primera colisión en el experimento Belle II.

Este experimento, que tratará de responder una de las preguntas más fundamentales como ¿por qué el universo está hecho de materia y no de antimateria?, además de desentrañar otros enigmas que aún guarda celosamente la naturaleza, se encuentra dentro SuperKEKB, que es el acelerador de partículas más intenso o luminoso de todo el mundo, superando en esta categoría al Gran Colisionador de Hadrones (LHC).

Tendrá 40 veces más luminosidad, es decir, 40 veces más colisiones que su antecesor KEK. La intensidad es importante porque representa más datos y contar con más datos significa mayores posibilidades de descubrimientos de nueva física.

Si es tan importante este acelerador y dicho experimento, ¿por qué no ocupó un lugar destacado en la prensa internacional, como ocurrió en 2009 cuando el LHC comenzó a funcionar? Quizá porque no se generó ninguna fake news o especulación catastrófica de que destruiría el mundo, como sucedió con el LHC.

26 de abril, un día histórico

Después de seis años de trabajo intenso por parte de 750 investigadores de 25 países, entre ellos México, llegó el gran día y tenían que probar que toda la tecnología, la electrónica, el hardware y demás elementos que se desarrollaron exclusivamente para Belle II estuvieran listos para empezar a tomar datos.

El 25 de abril, el cuarto de control del experimento estaba lleno, había alrededor de 50 científicos, entre ellos había un mexicano, Michel Hernández Villanueva, estudiante de doctorado en física y becario del Consejo Nacional de Ciencia y Tecnología (Conacyt).

“A las cinco de la tarde ya estaba lleno el cuarto de control, todos los investigadores hacían los últimos ajustes de sus equipos, yo verificaba que el monitor desarrollado por el grupo de científicos mexicanos funcionara correctamente. A las 8 de la noche se doblaron los haces para que estos se pudieran cruzar y generar las colisiones. Había mucho nerviosismo, fue hasta las 00:38 horas del 26 de abril que se registró la primera colisión. En ese instante pasamos del nerviosismo al júbilo”.

En tanto, en México, los investigadores checaban constantemente sus correos, ya que cuando se realizara la primera colisión el experimento les mandaría un mail y por ese medio se enterarían, los científicos que estaban en el cuarto de control no podían mandar mensajes ni correos adelantando información.

“Al revisar mi correo, estaba ahí el ansiado mail, teníamos las primeras colisiones, inmediatamente fui a revisar el diario de Belle II, era de hacía unas horas, ahí estaba la primera colisión, una simple entrada con una foto que ahora circula por todo el mundo. Yo estaba realmente feliz, inmediatamente mandé un correo a nuestros colegas de México, ellos ya también sabían pero era algo para compartir”, narró Pedro Podesta, profesor investigador de la Universidad Autónoma de Sinaloa (UAS).

A partir de la primera colisión, el experimento Belle II está generando, registrando y almacenando millones de colisiones entre electrones y positrones por segundo, las cuales posteriormente serán analizadas.

Brilla México en Japón

En este experimento que está en la frontera de la intensidad colabora un grupo de 12 científicos mexicanos pertenecientes a cinco instituciones: Benemérita Universidad Autónoma de Puebla (BUAP), Centro de Investigación y de Estudios Avanzados (Cinvestav), Conacyt, UAS y la Universidad Nacional Autónoma de México (UNAM).

Este grupo de científicos colabora en tres grandes rubros: desarrollo de hardware, cómputo y física, explicó Eduard de la Cruz Burelo, profesor investigador del Cinvestav.

En la parte de hardware, México trabajó en el diseño y desarrollo de la electrónica del Large Angle Bremsstrahlung Monitor (LABM), dispositivo que juega un papel fundamental dentro de Belle II y de SuperKEKB, ya que monitorea la geometría de la colisión y ayuda a ajustar la posición del haz en caso de que tuviera una mala alineación.

Guillermo Tejeda Muñoz, profesor investigador de la Facultad de Ciencias Físico Matemáticas de la BUAP, subrayó que el LABM debe estar completamente blindado, ya que cualquier entrada de luz externa a la generada por el haz producirá “ruido” o saturará los detectores y no podría monitorearse las colisiones.

Explicó que el LABM colecta la radiación emitida de los haces de partículas a través de cuatro espejos de berilio (Be), los cuales pueden ser ajustados con una muy alta precisión de hasta dos nanorradianes.

“La luz se extrae a través de una ventana especial del haz y después es guiada dentro de una serie de tuberías que constituyen los cuatro canales ópticos del detector LABM. Una vez extraída, las propiedades de la luz se miden dentro de dos cajas ópticas ubicadas fuera de la región de interacción”.

Cómputo mexicano

Además del desarrollo de la electrónica de uno de los monitores más importantes del experimento, el grupo de científicos mexicanos trabajó en la creación de cómputo de gran capacidad, ya que al ser el experimento de mayor intensidad en toda la historia de la humanidad, representa un gran reto el hecho de almacenar y procesar toda la información que ahí se genera.

“Al final, la cantidad de datos que esperamos tener en un año o dos años de operación será superior a la cantidad de datos que durante muchos años el LHC almacenó. Por ejemplo, la cantidad de datos que el experimento Solenoide Compacto de Muones (CMS , por sus siglas en inglés) tomó en un año, Belle II la tomará en un mes”, explicó De la Cruz Burelo.

Para dar atención a esta gran demanda de almacenamiento y procesamiento de datos, el grupo de científicos mexicanos creó un clúster con 530 máquinas (480 están en el Cinvestav y 50 en la UAS), las cuales proporcionarán dos por ciento del cómputo requerido para el experimento.

Quizás parecería poco aportar dos por ciento de cómputo, pero en realidad no lo es, lo que aportará México por día sería el equivalente a dejar una máquina normal trabajando día y noche durante 10 años, indicó el investigador del Cinvestav.

La apuesta por el escurridizo tau

El experimento Belle II tiene como propósitos principales medir con la mayor precisión posible las diferencias entre las propiedades de la materia y la antimateria y, con ello, probar si existen nuevas leyes que distingan las propiedades de ambas. De ser así, esto ayudaría a entender por qué nuestro universo está compuesto fundamentalmente por materia y no por antimateria.

En Belle II también se podría observar la no conservación del llamado “sabor leptónico” en leptones cargados, una propiedad que parece ser absoluta en la actual teoría de las partículas elementales, explicó el físico teórico Gabriel López Castro, profesor investigador del Cinvestav.

En particular, el grupo mexicano espera observar desintegraciones del leptón tau que ocurren muy rara vez (menos de una vez por millón de desintegraciones del leptón tau) y que hasta la fecha no han sido observadas y que se denominan corrientes de segunda clase.

“Su observación por primera vez, en caso de no concordar con lo que predice el Modelo Estándar, significaría un descubrimiento y aquí es el grupo mexicano en Belle II el que ha hecho los estudios teóricos y de sensibilidad detallados para su posible observación”.

Asimismo, estudiarán la violación de la simetría materia-antimateria en los leptones tau. En resumen, el grupo mexicano se concentrará en el estudio del enigmático y rebelde leptón tau, el cual podría considerarse como un “primo cercano del electrón” —pero tres mil 500 veces más masivo y con una vida extremadamente corta, de una billonésima de segundo.

El equipo mexicano considera que el leptón tau podría dar información de nuevas leyes físicas o de nuevas interacciones que se requieren para entender problemas no resueltos por el actual Modelo Estándar y en él se ha especializado en los últimos años, lo cual lo convierte en uno de los pocos grupos de expertos en esta partícula.

Además de especializarse en este leptón, el grupo mexicano modificó su forma de trabajo, ahora tiene una colaboración estrecha entre físicos teóricos y experimentales, parecería algo obvio pero no lo es, porque hasta hace un par de años, lo común era que cada equipo trabajara por separado, no solo en México, en todo el mundo.

“Trabajar en conjunto enriquece la colaboración ya que permite hacer propuestas de nuevas observaciones que aún no han considerado otros grupos dentro del experimento, y una discusión detallada de qué cálculos teóricos son interesantes de realizar en función de las necesidades del experimento”, expresó López Castro.

Habrá que esperar a que se haga un primer corte de datos para que sean procesados y analizados y que sean contrastados con la información que se tiene. Para ello todavía faltan varios años, pues hay que recordar que los grandes avances científicos no se dan de la noche a la mañana, requieren de mucho tiempo y esfuerzo por parte de muchos científicos.

Lo que sí es un hecho es que este experimento está marcando un hito en la frontera de la intensidad y que en los próximos años podría dar importantes avances científicos que ayuden a comprender mejor el universo.

Además, es un experimento en el que los mexicanos podrían jugar un papel protagónico ya que este grupo está muy preparado, pues ha adquirido ya mucha experiencia en su paso por los mejores laboratorios y experimentos como Fermilab o el mismo Gran Colisionador de Hadrones, en los cuales también ha realizado contribuciones importantes.

Por todo lo anterior, es un experimento que vale la pena seguir de cerca, aunque no aparezca en las primeras planas de los diarios como ha sucedido con otros proyectos, ya que incluso los mismos investigadores reconocen que este es un trabajo completamente diferente marcado por la cultura japonesa.

“No fue como en otros experimentos donde se tiene una celebración mucho más estridente (tanto dentro como fuera del experimento), después de todo es un experimento japonés, en donde el éxito y el fracaso se toma con calma pero con determinación”, concluyó Pedro Podesta.

 

 

 

 

Publicado en Tecnologia

Luis Alberto Aguilar Chiu, del Instituto de Astronomía, es parte de un grupo que analiza los datos presentados por la misión Gaia.

El investigador estudia, entre otros aspectos, el doblamiento del disco de nuestra galaxia y busca identificar galaxias satélite en el halo galáctico.

Los datos para formar el mapa tridimensional más completo de la Vía Láctea fueron presentados por la Agencia Espacial Europea (ESA) con los resultados de la misión espacial Gaia, que ofrece a especialistas como Luis Alberto Aguilar Chiu, del Instituto de Astronomía de la UNAM, la posibilidad de estudiar nuevas claves sobre el vecindario galáctico en el que vivimos.

Para dimensionar la importancia de este instrumento, detalló el investigador, “podemos imaginar tener un mapa de la colonia en la que residimos para recorrerla sin problemas, pero la ciudad entera es un misterio, y de repente contamos con un mapa de toda la urbe para explorarla y conocerla”.

El especialista, invitado a colaborar en el análisis de los datos desde 2005, precisó que la misión anterior de este tipo: The High Precision Parallax Collecting Satellite (Hipparcos), reveló la ubicación de 60 mil estrellas, y ahora, Gaia ofrece datos de mil 700 millones de estrellas distribuidas por toda la Vía Láctea. Esto representa el uno por ciento de nuestra galaxia, pero es el mapa más preciso.

“Mi participación es en el análisis científico de los datos. Desde 2011, con especialistas de la Universidad de Barcelona hemos desarrollado herramientas numéricas para estudiarlos; ahora que ya tenemos esa información nos ocupamos en echar a andar los programas. Es una carrera científica enorme”, añadió Aguilar Chiu desde Ensenada, Baja California.

La distancia es fundamental para conocer las propiedades de un objeto; desde nuestra perspectiva en la Tierra sólo podemos ver puntos en el cielo, pero no sabemos si se trata de una estrella enana o una gigante luminosa, por lo que para saber la distancia de los objetos los científicos utilizan un método llamado “paralaje”.

De la misma forma en que vemos el mundo en tres dimensiones, y al cubrirnos un ojo lo vemos en dos, los astrónomos miden las distancias entre las estrellas al revisar las diferencias en la posición aparente de los objetos, comparando imágenes tomadas por Gaia con seis meses de diferencia, cuando la Tierra está en puntos opuestos al Sol, siguiendo su trayectoria alrededor del mismo. Esta pequeña diferencia se denomina paralaje, y para conocerlo se necesitan mediciones muy precisas.

La sonda espacial Gaia fue lanzada en 2013 y comenzó a trabajar al siguiente año. Los datos recientemente liberados por la ESA corresponden al periodo del 25 de julio de 2014 al 23 de mayo de 2016, con un nivel de precisión equivalente a ver desde la Tierra una moneda de 10 pesos en la superficie de la Luna.

Además del paralaje, Gaia revisa constantemente sus propios movimientos en la bóveda celeste, algo conocido por los especialistas como movimiento propio. Ambos datos permiten ubicar tridimensionalmente mil 300 millones de estrellas y saber cómo se mueven en el cielo, ofreciendo la oportunidad de calcular directamente y con exactitud las distancias y movimientos de estrellas concretas.

Las posibilidades de estudio con este mapa tridimensional son muchas. Al universitario le interesa conocer el porqué de la forma peculiar del disco de la Vía Láctea, por lo que se han elaborado esquemas numéricos para saber qué tan doblada está nuestra galaxia y lo que esto implica.

Adicionalmente, en el halo de nuestra galaxia existe una serie de “galaxias satélite”, más pequeñas y con su propia colección de estrellas, que “caen” a la Vía Láctea.

Además de Aguilar Chiu, también colaboran en los equipos de investigación Bárbara Pichardo, del Instituto de Astronomía, y Gustavo Bruzual, del Instituto de Radioastronomía y Astrofísica, campus Morelia de la UNAM. Pichardo está interesada en caracterizar la forma de los brazos de la galaxia y Bruzual en su evolución química.

Gaia continuará trabajando hasta el 2021, y cada dos años presentará nuevos detalles del mapeo de la Vía Láctea. La publicación de los datos abre una ventana de oportunidades para conocer la galaxia en la que vivimos, concluyó.

 

 

Publicado en Tecnologia

Ciudad de México. 7 de mayo de 2018 (Agencia Informativa Conacyt).- La Agencia Espacial Mexicana (AEM) convoca a estudiantes mexicanos de licenciatura y posgrado para realizar estancias en sus instalaciones.

El objetivo es proporcionar a estudiantes de licenciatura y posgrado interesados en desarrollarse en ciencia y tecnología espacial, la oportunidad de realizar una estancia dentro del periodo del 9 de julio al 7 de diciembre de 2018, en la AEM, participando en un proyecto que sea de interés del estudiante y que aparezca en el listado Anexo II Guía de Proyectos de esta convocatoria.

Asimismo fomentar la vinculación de estudiantes mexicanos con la Agencia Espacial Mexicana, en temas de ciencia y tecnología espacial, así como crear redes nacionales de colaboración en temas de ciencia y tecnología espacial.

Podrán participar estudiantes de licenciatura y posgrado de nacionalidad mexicana. Los estudiantes deberán ser postulados por la institución de educación superior a la que pertenecen.

Estar cursando estudios de licenciatura o posgrado en ciencias, tecnología, ingeniería o matemáticas. Tener un promedio mayor de 8.5 en una escala de cero a diez y haber cursado más de 75 por ciento de los créditos del plan curricular (en caso de contar solo con estudios de licenciatura).

Demostrar su interés en el campo aeroespacial a través de un ensayo de una cuartilla en el que exponga los motivos por los que quiere hacer esta estancia en la AEM. De ser el caso, describir los proyectos aeroespaciales en los que ha participado.

Ser postulado por la institución de educación superior en la que está realizando sus estudios, mediante el envío del formato Carta de Postulación firmado, junto con un documento que acredite la personalidad del representante legal de la institución educativa que firme la postulación.

Los estudiantes que participen en las estancias deberán cumplir con las siguientes obligaciones:

  1. a) Mostrar un comportamiento adecuado durante la estancia atendiendo a la normatividad de la Agencia Espacial Mexicana.
  2. b) Notificar por escrito a la institución de educación superior que lo postuló y a la Agencia Espacial Mexicana si desea cancelar la estancia en cualquier etapa del proceso.
  3. c) Sufragar los gastos adicionales que no estén incluidos en los apoyos institucionales requeridos.
  4. d) Notificar a la institución de educación superior que lo postuló y a la Agencia Espacial Mexicana el domicilio y sus datos de contacto durante la estancia.
  5. e) En caso de que desee extender su periodo de estancia, solicitar la autorización de la institución de educación superior que lo postuló y de la Agencia Espacial Mexicana.
  6. f) Sufragar los gastos que se generen en caso de extender el periodo de la estancia.
  7. g) Entregar a la institución de educación superior que lo postuló y a la Agencia Espacial Mexicana un informe de impactos personales y un informe del proyecto realizado, al término de la estancia.
  8. h) Dar por lo menos una plática y un curso sobre el proyecto desarrollado y las experiencias de su visita, a grupos de estudiantes mexicanos, en el o los recintos, fecha y hora acordados previamente con la AEM.

Las instituciones de educación superior registrarán a sus candidatos en línea en el portal www.educacionespacial.aem.gob.mx durante el periodo de registro.

La institución de educación superior deberá confirmar a la AEM la participación de su estudiante en la estancia corta en la AEM, mediante el envío de un oficio con el itinerario de viaje y llegada a la Ciudad de México, especificando los datos de contacto y domicilio de hospedaje del estudiante, a más tardar el 2 de julio de 2018.

 

Publicado en Tecnologia

El Programa Espacial Universitario realizó la etapa práctica del Tercer Concurso de Satélites Enlatados CanSat 2017-2018.

Más de 200 estudiantes de esta Universidad y del Instituto Politécnico Nacional participaron.

Es un proyecto satelital completo: diseño, construcción, pruebas en tierra, vuelo, reporte científico.

Se utilizan antenas, computadoras de abordo, sensores de presión, de temperatura, velocidad, trasmisión de datos.

Los ganadores acudirán a la CanSat Competition en Texas.

La estación terrena de esta misión fue el Complejo Deportivo “Alfredo Harp Helú”, al sur de la Ciudad Universitaria. 29 ingenios satelitales integrados dentro del tamaño aproximado de una lata de refresco, el tripulante: un huevo de gallina, y la lanzadera espacial: un dron.

Es la etapa práctica del Tercer Concurso de Satélites Enlatados CanSat 2017-2018, organizado por la Universidad Nacional Autónoma de México a través del Programa Espacial Universitario (PEU), en colaboración con otras instituciones como la Agencia Espacial Mexicana.

En esta edición del certamen que se divide en siete etapas se  inscribieron 60 equipos con más de 300 estudiantes, provenientes de la UNAM y del Politécnico Nacional. Trabajaron más de seis meses para que finalmente 200 estudiantes llegaran a esta fase de lanzamiento para poner “en órbita” su prototipo.

Se trata de satélites enlatados (CanSat), construidos, diseñados y probados por estudiantes de bachillerato (categoría Iyari) y licenciatura (categoría Miztli) de la UNAM, con el objetivo de que los alumnos obtengan una experiencia práctica con tecnología espacial.

“Sin duda es un proyecto satelital completo: desde la concepción, el diseño, construcción, pruebas en tierra, el vuelo, el reporte científico que corresponde, y sirve para formar a los alumnos, para entrenarlos en la tecnología especial, porque se utilizan antenas, computadoras de abordo, sensores de presión, de temperatura, velocidad, todo eso tiene que funcionar, además de la trasmisión de los datos, por supuesto la otra capacitación es la administración de un proyecto científico”, manifestó José Francisco Valdés, titular del PEU.

La misión

La misión consiste en que el CanSat transmita información de presión, temperatura, orientación y aceleración durante el trayecto de subida con el dron y durante la caída libre desde una altura de 135 metros. Con estos datos deberá ser calculada la velocidad en todo el trayecto y la altura máxima.

El satélite enlatado lleva en su interior un huevo de gallina, el cual debe sobrevivir el impacto de la caída. El CanSat deberá seguir su transmisión de datos una vez que haya tocado tierra, que en esta ocasión fue una cancha empastada de futbol americano del Complejo Deportivo “Alfredo Harp Helú” de CU.

“Los más de 200 estudiantes que se ubicaron en este evento es el premio mayor para nosotros. Tras la entrega de un reporte por escrito, en los próximos días, haremos público el nombre de los ganadores y triunfará aquel equipo que transmita más datos, que su tripulante (huevo) haya sobrevivido y que haya cumplido cabalmente con todas las especificaciones y requerimientos”, explicó el Jefe de Misión, Alejandro Farah del Instituto de Astronomía de la UNAM.

Los ganadores, quienes fueron evaluados por un jurado compuesto por siete especialistas del rubro, acudirán a la “CanSat Competition” en Texas, con la representatividad de la UNAM, para enfrentarse a otros equipos universitarios del mundo.

 

 

 

 

 

 

Publicado en Tecnologia

El 17 de agosto del 2017 fue un día épico que se deber recordar por siempre. Y no lo digo porque fuera el día de mi cumpleaños, sino por razones de índole científica que cambiarán el futuro de la astrofísica.

Si Bruce Banner o Peter Parker hubieran estado cerca de algún experimento donde se emitiera mucha radiación X o gamma, en vez de convertirse en Hulk o el increíble hombre araña, se hubieran convertido en chicharrón. Por desgracia, el contacto directo de la humanidad con la radiación X y gamma ha sido mayormente por medio de bombas nucleares. La buena noticia es que también hemos tenido contacto con ella vía un fenómeno astronómico: los destellos de rayos gamma.

Un destello de rayo gamma (al que me referiré de ahora en adelante bajo las siglas DRG) es un resplandor cuyos fotones presentan energía en el rango gamma. Un solo DRG libera, en unos cuantos segundos, la misma energía que el Sol durante toda su vida (aproximadamente nueve mil millones de años). Tras décadas de estudio, se sabe que los DRGs tienen su origen en lugares sumamente lejanos, distancias externas a la Vía Láctea, y sabemos a groso modo que es lo que los genera. Si el DRG dura más de dos segundos, lo más probable es que se produjo cuando una estrella con problemas de obesidad (es decir, una estrella que al nacer lo hace con más de treinta veces la masa del Sol) y que rota sumamente rápido (aproximadamente a cuatrocientos kilómetros por segundo), muere. Si el DRG dura menos de dos segundos, lo más viable es que se generase tras el choque entre dos estrellas de neutrones. Sea cual sea el progenitor, el caso es que se eyecta una fracción de la masa en forma de unos chorros notablemente colimados —unos cuantos grados—, muy rápidos —casi a la velocidad de la luz— y sumamente energéticos —radiación X y gamma.

 

Figura 1. Concepción artística de un DRG. https://svs.gsfc.nasa.gov/12055

 

En 1915, Einstein propuso la teoría de la relatividad general. Dicha teoría propone que la fuerza que un objeto con masa tiene, se debe a la deformación que él mismo está generando sobre el espacio-tiempo. A su vez, el espacio-tiempo le dicta a los objetos cómo y por dónde moverse. Un año después de plantear la teoría de la relatividad general, Einstein propuso la existencia de las ondas gravitacionales (a las cuales me referiré como OG de ahora en adelante). Una OG es una perturbación del espacio tiempo que se expande conforme pasa el tiempo. La analogía en este caso podría ser una gota de lluvia cuando cae en un estanque: la gota impacta el agua y se genera una perturbación que se expande de forma circular conforme pasa el tiempo. Por si no quedara claro, en esta analogía el estanque representa el espacio-tiempo y la perturbación representa la OG.

 

Figura 2. Concepción artística de la fusión de dos hoyos negros y la producción de OGs. https://www.nasa.gov/feature/goddard/2016/nsf-s-ligo-has-detected-gravitational-waves

 

El 17 de agosto del 2017, el detector de ondas gravitaciones LIGO (en EUA) con colaboración con el detector Virgo (en Italia) detectó las ondas gravitacionales provenientes de la fusión de dos estrellas de neutrones. Lo anterior quedó confirmado debido a que poco menos de dos segundos después de las OGs detectadas por Ligo-Virgo, los satélites espaciales Fermi e Integral detectaron un DRG de corta duración proveniente de la misma región en el cielo.

 

Figura 3. Concepción artística de la producción de OGs y el DRG corto del 17 de agosto del 2017 debido a la fusión de dos estrellas de neutrones. https://svs.gsfc.nasa.gov/12740

 

Después de la detección de la OG por parte de LIGO y el DRG detectado por Fermi e Integral, el mundo de la astronomía vivió uno de sus momentos más intensos en la historia. Aproximadamente doscientos telescopios —observando en todos los rangos de longitudes de onda (visible, radio, infra rojo, ultra violeta, X, y gamma), detectores de neutrinos y satélites espaciales— se pusieron a observar de forma detallada y prolongada a la galaxia NGC4993. Nunca un fenómeno astrofísico había sido observado por tantos observatorios al mismo tiempo. Durante las semanas posteriores a la fusión de las estrellas de neutrones, se observaron contrapartes del destello gamma en el rango X, el ultra-violeta, el óptico, en el infra-rojo, y en el radio. A partir de todos los estudios posteriores del evento del emblemático 17 de agosto se confirmó que en efecto se detectó por primera vez las OGs previas a la fusión de dos estrellas de neutrones, y el DRG corto producido tras la fusión de las mismas.

El evento del 17 de agosto no solo fungió como una sinergia cósmica en la cual el mundo de los destellos de rayos gamma se conectó con el de las ondas gravitacionales. A lo anterior súmenle que ¡también se conecta con mi fecha de nacimiento! Mejor regalo de cumpleaños no podía pedir. No sé ustedes, pero de ahora en adelante me toca doble festejo cada 17 de agosto. Salud.

 

 

 

Publicado en Tecnologia

La colaboración que lidera Arturo Fernández Téllez, investigador de la BUAP, ha dado lugar a dos patentes, la publicación de artículos arbitrados, el diseño y construcción de dos detectores y, con ello, la formación de recursos humanos.

La ciencia tiene la capacidad de reunir por un interés común a científicos de todo el mundo y hacerlos trabajar en equipo. El ejemplo por excelencia es la Organización Europea para la Investigación Nuclear (CERN), con el Gran Colisionador de Hadrones (LHC) y el experimento ALICE (A Large Ion Collider Experiment) en el que participan como invitados 37 países, 151 instituciones y más de mil 550 investigadores, incluidos 40 científicos mexicanos.

Entre las universidades mexicanas con presencia en este experimento ubicado en la frontera franco-suiza se encuentra la Benemérita Universidad Autónoma de Puebla (BUAP), cuya colaboración inició formalmente en el año 2001 para proponer la construcción del detector de partículas Cosmic Ray Detector (ACORDE), como parte del conjunto de instrumentos de ALICE para estudiar iones pesados.

“Con ALICE propusimos colisionar iones pesados para estudiar a la materia del núcleo atómico en condiciones extremas. Utilizando el LHC, los hacemos chocar ya que en el momento de la colisión se da una situación única: una muy alta densidad de materia y una temperatura de cientos de miles de veces la temperatura que hay en el interior del Sol. En estas condiciones, la materia sufre cambios muy drásticos, se tiene un estado físico que conocemos como desconfinamiento de la materia nuclear”, señaló el físico Arturo Fernández Téllez.

Es el momento en el que los quarks, partículas que conforman a los protones, neutrones y los gluones —estos últimos portadores de la interacción fuerte— forman un plasma en un estado similar al que se produjo pocos microsegundos después del Big Bang, cuando el universo se empezó a expandir, explicó el investigador de la Facultad de Ciencias Físico Matemáticas de la BUAP e integrante de la Academia Mexicana de Ciencias.

“La existencia de este estado de la materia es muy especial, se descubrió hace más de 10 años y desde entonces se están estudiando sus propiedades físicas”, indicó el líder de la presencia poblana en el CERN, quien añadió que esta colaboración ha representado muchos beneficios para todos, pues ha permitido formar recursos humanos de nivel licenciatura, maestría y doctorado, se han podido publicar artículos arbitrados en revistas internacionales, además de diseñar, construir, poner en marcha y experimentar con los ACORDE y el detector AD (ALICE Diffractive detector), dos detectores que llevan sello mexicano.

Además, se han patentado dos invenciones tecnológicas en México; la primera es un dispositivo llamado Contadora lógica de partículas, un sistema electrónico que registra el paso de partículas con carga eléctrica. La innovación de este sistema electrónico consistió en que es versátil, pequeño y portátil. El registro se obtuvo el 29 de mayo de 2014.

La otra patente es el Piano Cósmico -cuyo registro se obtuvo el 14 de junio de 2013-, un dispositivo que se lleva a ferias científicas con fines pedagógicos y de divulgación de la ciencia. El aparato tiene cuatro pequeños detectores similares a los de ACORDE, cuando se detecta un rayo cósmico, produce un beep de sonido y un flash de luz, tomando en cuenta que estas partículas llegan en todo momento a la superficie terrestre, de manera azarosa, se producen sonidos, los que Fernández Téllez ha nombrado como música cósmica.

Para hacer más agradable “el ruido” producido por este dispositivo, se le programó la emisión de los beeps que producen los detectores de rayos cósmicos con distintas frecuencias musicales. En el sitio http://alicematters.web.cern.ch/?q=ALICE_cosmicpiano se puede ver en acción el Piano Cósmico, en dueto con el pianista Al Palmer, en el Festival de Jazz de Montreux, Suiza.

Una contribución adicional es que desde el año 2002 se aceptó que se abriera en el ALICE una área de estudio de la física de astropartículas. “Hemos analizado los rayos cósmicos de muy alta energía que llegan a la Tierra. Son partículas con carga eléctrica, expulsadas de los objetos astrofísicos que rodean a la Tierra como las galaxias y estrellas, viajan por el espacio por años, llegan a la Tierra, pasan la atmósfera terrestre y producen una cascada de partículas. Así como los astrónomos reciben información de las estrellas observando sus espectros de luz, también hay formas de estudiar a las estrellas analizando a las partículas que provienen de ellas, por eso se llaman astropartículas”, explicó Fernández Téllez.

En especial, este campo se ocupa de las partículas que producen una cantidad anómala de muones de muy alta energía, son capaces de atravesar hasta cien metros de roca sólida y pasar por el sistema de detección de ALICE, que se encuentra en una caverna a 60 metros bajo tierra, y ser detectados. “Esos fenómenos son muy especiales y, no se habían estudiado a profundidad, hasta que llegó ALICE”, señaló el académico.

Se prevé que la cooperación mexicana con el CERN, en la que participan físicos de partículas, teóricos y prácticos, así como ingenieros de la Universidad Nacional Autónoma de México, del Centro de Investigación y de Estudios Avanzados, la Universidad Autónoma de Sinaloa y, más recientemente, la Universidad Autónoma de Chiapas, continúe por 10 años más, y que se estudien distintos campos de la física como el plasma de quarks y gluones, así como física de colisiones ultra-periféricas.

 

Publicado en Tecnologia

No dejes de ver el cielo esta semana.

Como cada año, esta semana podremos disfrutar de las Líridas, uno de los fenómenos astronómicos más importantes del 2018. Se trata de la lluvia de meteoros más antigua de la que se tiene registro. Si bien, no se trata del fenómeno astronómico más espectacular del año, es lo suficientemente interesante como para que lo tengas en cuenta.

El fenómeno se origina por el paso del cometa Tatcher, y se trata de incontables meteoros del tamaño de granos de arena, que se desprenden del cometa. Cuando los fragmentos atraviesan la atmósfera, a unos 49 km/s, dejan una estela luminosa que nos permite verla en el cielo. Toma su nombre de la constelación de Lyra, porque se observa más intensamente cuando los meteoros pasan sobre la constelación de Lyra.

Este año las Líridas podrán verse del 16 al 30 de abril. El día que el fenómeno se verá con mayor intensidad será durante la madrugada del 22 de abril, cuando se podrán observar hasta 18 meteoros por minuto.

Las mejores condiciones para ver la lluvia de meteoros es en una zona con poca contaminación lumínica y cielo despejado, preferentemente fuera de las grandes ciudades. No hay una hora específica en la que se verá el fenómeno, pero puedes tratar entre medianoche y el amanecer. Recuerda que si hoy te lo pierdes, aun podrás observar algo hasta durante lo que resta de abril.
 

FUENTE: Travel and leisure

Publicado en Ciencia
Página 1 de 18
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.