(Agencia Informativa Conacyt).- El programa espacial Tepeu, diseñado por el profesor investigador del Instituto Politécnico Nacional (IPN), Mario Alberto Mendoza Bárcenas, en colaboración con científicos de diversas instituciones, es la primera misión espacial mexicana que tiene como objetivo, además de la demostración tecnológica, el desarrollo de una misión con fines científicos para investigación de la ionósfera sobre México.

En entrevista, el líder del proyecto detalla que el programa consiste en desarrollar y poner en órbita un satélite tipo CubeSat con menos de un kilogramo de peso, que permita realizar un estudio de la parte central de la ionósfera, a unos 500 kilómetros de la Tierra.

La misión, con un costo aproximado de 10 millones de pesos, contará con sensores como magnetómetros, sonda de Langmuir que medirá el plasma —puesto que la ionósfera se comporta como tal—, además de tener un medidor de partículas y un GPS.

Los sensores y la computadora que contendrá en su interior el “bicho espacial”, refiere, enviarán los resultados a una estación terrena, lo que permitirá estudiar esta parte fundamental de la atmósfera terrestre y que, a la postre, podría establecer las bases para la investigación en otras áreas de ciencia de frontera, como los precursores sísmicos.

Entrevistado en el marco del Simposio Internacional: La ciencia y la tecnología para la resiliencia y desarrollo de Oaxaca, afirma que a esta misión se han sumado investigadores como el doctor Enrique Cordaro Cárdenas, del Departamento de Física de la Universidad de Chile, quien tiene amplias investigaciones en materia de precursores sísmicos basado en el análisis del comportamiento del campo magnético terrestre.

Además, precisa, la misión cuenta con la participación del doctor Manuel Sanjurjo Rivo, investigador de la Universidad Carlos III de Madrid, del Departamento de Bioingeniería e Ingeniería Aeroespacial, cuya principal aportación estará basada en el uso de nuevos materiales para el desarrollo de sensores, como el C12A7:e- (dodecacalcium hepta-aluminate) que se pueda probar a bordo de la misión.

Así como científicos de instituciones de la Universidad Nacional Autónoma de México (UNAM), el Centro de Investigación Científica y Tecnológica de Guerrero, A.C., la consultora Fupresa, A.C., la Universidad de Chile, la compañía espacial Proxima Space y con el asesoramiento de la Agencia Espacial Mexicana (AEM).

El satélite Tepeu 1, considera, además de obtener datos de la parte media de la ionósfera, que es una capa de la atmósfera altamente sensible a múltiples fenómenos, entre los cuales se encuentra la actividad solar y el interior de la Tierra, también habrá de validar la tecnología desarrollada.

El profesor titular B adscrito al Centro de Desarrollo Aeroespacial del IPN también ha puesto en marcha herramientas como Pegasus y plataformas de vuelo suborbital, que consisten en vuelos en parapente y globos sonda, respectivamente, a través de los cuales se documenta el funcionamiento y desempeño de los equipos que habrán de enviar a la misión espacial.

“No podemos detenernos por falta de recursos, la complejidad de los permisos y el desarrollo de mapas, planos y los requerimientos tecnológicos y científicos que la misión implica, mientras tanto, realizamos pruebas en parapentes y globos estratosféricos”.

Experimentos que, anuncia, buscará traer a Oaxaca antes de que concluya 2018, para incentivar el interés de estudiantes y fomentar la colaboración de instituciones educativas locales, además de continuar con este tipo de “pruebas de concepto” que permitirán madurar los diseños en ruta hacia la misión al espacio.

El doctor en ingeniería eléctrica por la División de Estudios de Posgrado de la UNAM indica que una vez que cuenten con la carga útil totalmente desarrollada buscarán, con el apoyo de la Agencia Espacial Mexicana y con las instituciones (IPN, UNAM), lanzar al espacio el satélite de 10 por 10 por 10 centímetros.

Una vez en la ionósfera, el CubeSat recolectará información que permita detectar señales y fenómenos basados en métodos científicos y tecnológicos que, a corto plazo, permitirán obtener datos para alimentar investigaciones sobre el conocimiento de la ionósfera y, a largo plazo, contribuyan a investigaciones que permitan generar criterios que logren salvar vidas y reducir riesgos, pérdidas económicas y materiales por los sismos, al detectar la ocurrencia de los mismos con horas de anticipación, además de establecer beneficios también en materia de cambio climático, concluye.

 

 

 

Publicado en Tecnologia

Lo admitimos. En estos precisos momentos todo el mundo parece estar girando en torno al evento de Apple y la presentación de su nueva familia iPhone. Pero mientras todos centran su anteción en ello existen otros temas de interés para el resto de la comunidad. Como la nueva controversia con Plutón.

Como bien sabemos ese remoto enano tiene ya bastantes años sin ser considerado oficialmente por la humanidad como un planeta. Pero eso pronto podría cambiar; gracias a una nueva investigación de la Universidad de Florida Central (UCF) (vía Yahoo!).

Todo se enfoca a rebatir los parámetros impuestos en 2006 por la Unión Astronómica Internacional (IAU). Donde marcó tres parámetros necesarios para que un cuerpo celeste fuera considerado un planeta:

- Que orbite alrededor del sol
- Que tenga la suficiente masa para mantenerse casi redondo
- Y que el cuerpo tenga la capacidad de mantener despejada su órbita

Sin embargo, Plutón tiene una órbita que confluye con la de Neptuno, viendo afectada su gravedad. Y por ello fue expulsado de la lista.

Sin embargo, el proyecto de la UCF, publicado en la Revista Ícaro (vía NewsWeek), y encabezado por el científico planetario Philip Metzger, concluye que los parámetros de la IAU son inválidos.

La definición de la IAU diría que el objetivo fundamental de la ciencia planetaria, el planeta, se supone que está definido sobre la base de un concepto que nadie usa en su investigación. Y dejaría fuera el segundo planeta más complejo e interesante de nuestro sistema solar.

Si tomas eso literalmente [la definición de la IAU], entonces no hay planetas, porque ningún planeta despeja su órbita.

Esos tres principios además, según Metzger, no pueden ser aceptados como un parámetro científico, ni de investigación, debido a que al revisar los antecedentes de los últimos 200 años para la construcción de esas reglas se descubrió que´sólo una publicación de 1802 impuso ese controvertido tercer punto.

Existirían más de 100 casos de investigaciones científicas modernas donde se ignoró o contradijo el nuevo supuesto parámetro. Así que ahora el clamor es tirar todo a la basura.

Y por ende volver a considerar a Plutón como un planeta.

Publicado en Ciencia

Ciudad de México (Agencia Informativa Conacyt).- Ya sea para conocer tiempos de siembra y cosecha, desplazamientos, viajes, cálculos matemáticos o como inspiración para creaciones artísticas, las estrellas han sido objeto de fascinación desde el inicio de la civilización humana, la cual ha levantado su vista al firmamento confrontándose con profundas incógnitas y emociones que tratan de resolver el origen e importancia del cosmos.

La literatura registra que hace 32 mil años aproximadamente, nuestros antepasados hacían incisiones en huesos de animales para representar las fases de la luna, vivían de la caza y recolección, por lo que seguían las estrellas y predecían los cambios de estación gracias a la observación del cielo.

Pero ante esta fascinación, ¿qué son las estrellas?, ¿qué forma tienen?, ¿cuál es su función e importancia en el universo? Con el paso del tiempo y en aras de una evolución científica y tecnológica que explican mejor el mundo y lo que hay fuera de él, el humano perfeccionó métodos e instrumentos a través de los siglos que han facilitado la resolución de estas y otras incógnitas que envuelven a estos astros.

 

El papel de las estrellas en el universo

De acuerdo con el astrónomo Armando Arellano Ferro, investigador del Instituto de Astronomía (IA) de la Universidad Nacional Autónoma de México (UNAM), las estrellas son los ladrillos del universo.

“Una galaxia está hecha básicamente de estrellas, tiene además polvo y gas interestelar, pero las estrellas son las células de este gran cuerpo que es la galaxia y su estudio permite el conocimiento del estado primigenio del universo”.

A diferencia de los planetas, una estrella es un cuerpo esférico con la temperatura interior suficiente para tener reacciones nucleares y generar energía. Estas se formaron por el colapso gravitacional de una nube, y a medida que se forma un centro masivo, la aceleración hacia ese centro aumenta.

“Las estrellas son isotrópicas, es decir, son iguales en todas las direcciones y su simetría esférica se debe a este proceso de reacciones masivas. Además, algunas de ellas tienen rápida rotación, por lo que pierden su forma esférica y toman forma alargada en el ecuador, como la forma de la Tierra, dada la fuerza centrífuga de su rotación”, explicó.

 
Primeras medidas y registros
 
Para facilitar su proceso de estudio, los primeros astrónomos agruparon las estrellas en constelaciones, con el fin de rastrear la posición del sol y el movimiento de los planetas.

De acuerdo con el Instituto Nacional de Técnica Aeroespacial (INTA), dichas observaciones fueron registradas en las primeras cartas estelares o mapas nocturnos, donde la más ancestral de ellas corresponde a la antigua astronomía egipcia en el año 1534 antes de nuestra era. 

Con la recopilación de estos datos, los antiguos astrónomos babilónicos de Mesopotamia crearon los primeros catálogos de estrellas conocidos; sin embargo, el primero de estos tomos fue escrito por la astronomía griega en el año 300 antes de nuestra era aproximadamente.

A propósito de estos registros, fueron los astrónomos chinos los primeros en observar y describir una supernova, mientras que los astrónomos islámicos medievales hacían lo suyo al crear instrumentos que permitieron conocer la ubicación de las estrellas, nombrarlas y crear los primeros grandes observatorios e institutos de investigación.

“Hoy se lleva un registro específico a través de un catálogo oficial de estrellas variables en cúmulos globulares, la curadora actual es la doctora Christine Clement, quien es una astrónoma de la Universidad de Toronto y le da seguimiento a la información que inició Helen Sawyer Hogg en la década de 1940”, subrayó Armando Arellano.

De acuerdo con el especialista, el universo aún está lleno de secretos que faltan por descifrar y estudios por realizar para desentramarlos, y las estrellas son solo una parte de las incógnitas que todavía quedan por estudiar.

La especialidad de Armando Arellano son los estudios de las estrellas variables y consideró que en estos niveles de observación y conocimiento, puede que las estrellas ya no sean tan abundantes como los planetas.

“Estudiando este grupo de estrellas en particular, podemos no solo proveer de datos sobre los parámetros físicos de las estrellas y el cúmulo globular, sino también podemos comprender cómo evolucionan las estrellas en sus diferentes etapas y, por lo tanto, sabemos más de la historia y evolución de nuestro universo. El universo sería mucho menos interesante sin estos astros”.

 

 

Publicado en Tecnologia
Sábado, 01 Septiembre 2018 05:52

Confirman existencia de agua en la luna

Está en forma de hielo, en los polos norte y sur de nuestro satélite natural, a 163 grados bajo cero.

La búsqueda de agua en el Sistema Solar se asocia a la posibilidad de encontrar vida, indicó José Franco, investigador del Instituto de Astronomía de la UNAM y coordinador del Foro Consultivo Científico y Tecnológico.

Esta semana, un artículo publicado en la revista estadounidense Proceedings of the National Academy of Sciences (PNAS) muestra la primera observación “directa y definitiva” de agua helada sobre la superficie de la Luna.

Un equipo de investigadores de varias universidades del vecino país, encabezado por Shuai Li, de la Universidad de Hawái, analizó imágenes recogidas en 2009 por el instrumento Moon Mineralogy Mapper (M3), que voló en Chandrayaan-1, la primera misión india a nuestro satélite natural.

Así fue como encontraron hielo en la superficie lunar, en áreas de los polos en donde nunca da la luz solar. En estas regiones, a causa de la reducida inclinación del eje de rotación de la Luna respecto a su órbita en torno al Sol, de apenas 1.5 grados, existen cráteres que siempre están en tinieblas.

“La búsqueda de agua en el Universo, en particular en el Sistema Solar, está asociada a la posibilidad de encontrar vida. También, ayuda a que en el futuro la exploración espacial tenga, in situ, bases y abasto de elementos fundamentales para la vida de los seres humanos”, comentó José Franco López, investigador del Instituto de Astronomía (IA) de la UNAM y coordinador general del Foro Consultivo Científico y Tecnológico (FCCyT).

En junio de 2009, la sonda lunar Reconnaissance Orbiter (LRO) de la Agencia Aeroespacial de Estados Unidos (NASA) detectó que los polos lunares helados eran algunos de los sitios más fríos del Sistema Solar, con temperaturas de hasta 238 grados bajo cero, suficientes para acumular hielo durante miles de millones de años. Las regiones donde Shua Li y sus colegas encontraron el agua helada no superan los 163 grados bajo cero.

“La temperatura en la superficie de la Luna varía muchísimo. Cuando le da el sol, como no tiene prácticamente atmósfera puede llegar a los 100 grados Celsius o más. Pero en la noche baja bastante: en las zonas donde no da nunca la luz solar se enfría a más de 160 grados bajo cero, así que el agua está en forma de hielo muy frío y antiguo, pues está acumulado”, explicó Franco.

El análisis reciente de la exploración de 2009 concluye, sin equivocación, que hay hielo en varios de los cráteres alrededor de los polos lunares, con más abundancia en el polo sur, añadió el astrónomo.

Instrumentos, extensiones humanas

El universitario indicó que los instrumentos tecnológicos son extensiones de nuestros sentidos para saber del mundo y del Universo. “Nos han permitido conocerlos con mucho más detalle y precisión”.

En los últimos 50 años, prosiguió, el desarrollo de la electrónica y del software ha permitido que los instrumentos se vuelvan no sólo detectores con la ayuda del ingenio humano, sino equipos automatizados que pueden descubrir por sí mismos lo que los expertos buscan.

En el caso de México, Franco concluyó que el desarrollo de instrumentación es una asignatura pendiente, pues la política económica ha privilegiado el mercado externo y que empresas multinacionales se instalen en el país para ofrecerles mano de obra barata. “Esto ha reducido la capacidad y la posibilidad de generar industria de alta tecnología”.

 

 

 

Publicado en Tecnologia

Ensenada, Baja California. (Agencia Informativa Conacyt).- Astrónomos de la Universidad Nacional Autónoma de México (UNAM) colaboraron en la investigación para explicar el caso de HuBi1, una nebulosa planetaria con una estructura opuesta a la convencional, ya que sus iones más cargados están más alejados de la estrella.

Las nebulosas planetarias son una de las fases finales de las estrellas comparables con el Sol y típicamente estos objetos concentran una alta ionización en el área más cercana a la estrella.

HuBi1 es una estrella similar al Sol y no solamente porque tiene una masa casi igual —tan solo 10 por ciento mayor— sino también porque se encuentra sola, es decir, no es un sistema binario de estrellas, lo que ofrece una visión de lo que podría ocurrir dentro de cinco mil millones de años, cuando el Sol llegue a las etapas finales de su vida.

Los hallazgos de la investigación internacional para explicar la existencia de HuBi1, liderada por el doctor Martín Guerrero, del Instituto de Astrofísica de Andalucía, fueron publicados el pasado 6 de agosto en la prestigiada revista Nature Astronomy, con el artículo The inside-out planetary nebula around a born-again star, del que los astrónomos de la UNAM son coautores.

En entrevista con la Agencia Informativa Conacyt, el doctor Christophe Morisset, investigador del Instituto de Astronomía de la UNAM, campus Ensenada, explicó que en los últimos 50 años la estrella HuBi1 disminuyó 10 mil veces su luminosidad.

“La nebulosa externa todavía emite luz porque todavía está ionizada y caliente pero este estado es como un fósil, algo similar a las agujas de los relojes que brillan en la noche cuando se apaga la luz. Si la estrella no se prende de nuevo, después de unos siglos se apagará completamente la nebulosa”.

Para explicar la estructura atípica de la nebulosa planetaria, Morisset en colaboración con el doctor Alexandre Alarie, desarrolló modelos de choque y modelos de enfriamiento.

“Por la parte interna, donde la estructura de ionización se observa al revés de lo común, con los iones más cargados ubicados lejos de la estrella central, imaginamos que se trata de un choque entre una nebulosa anterior y la última eyección de materia expulsada por la estrella hace poco tiempo, cuando sufrió una fase de 'renacimiento'”.

Morisset expuso que el choque se propaga en la nebulosa hacia afuera, calentando y ionizando el gas; para explicar este fenómeno hicieron modelos teóricos que reproducen las observaciones del estado del gas detrás del choque.

Observaciones desde el OAN

Comprender la cinemática de HuBi1, su evolución y las velocidades de sus gases, fue el trabajo realizado desde el Observatorio Astronómico Nacional (OAN) Sierra de San Pedro Mártir por la doctora Laurence Sabin, investigadora del Instituto de Astronomía de la UNAM, campus Ensenada.

“De la cinemática pudimos ver que no concordaba con lo que estábamos viendo y también podíamos hacer esos modelos para darnos una idea de cómo era esta nebulosa y por qué tiene esas propiedades morfocinemáticas”, comentó la investigadora en entrevista.

Para realizar estas observaciones, los astrónomos utilizaron en el OAN el Manchester Echelle Spectrograph, espectrógrafo de alta resolución que usa filtros nebulares.

“La idea de este instrumento es tener un montón de cortes y no solamente horizontales y verticales, sino en todas direcciones, porque entre más cortes hay, mejor se puede reconstruir el objeto y eso se hace con otra herramienta que se llama Shape, desarrollada por Wolfgang Steffen, otro investigador de la UNAM, Ensenada”.

El inicio de una aventura

Las observaciones de HuBi1 están lejos de haber concluido, pues los astrónomos continúan siguiéndola para ver su evolución, especialmente tras calcular que su fluorescencia se apagará en apenas unas centenas de años.

Para Christophe Morisset, esto representa el inicio de una aventura, ya que generaciones de futuros astrónomos tendrán la oportunidad de observar un objeto del que no hay antecedentes.

“Es el primero con esta estructura donde se combinan dos efectos muy raros: el efecto fósil por la parte externa, el efecto de choque por la parte interna, las dos cosas se encuentran por separado pero en el mismo objeto, es excepcional, es la primera vez y no creo que haya muchas”, destacó.

• Dra. Laurence Sabin
 Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

• 
Dr. Christophe Morisset
  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

 

 

 

Publicado en Tecnologia

• El Sol es nuestra estrella más cercana, y entender su física ayudará a comprender la de todas las estrellas, indicó Juan Américo González, investigador de la unidad Michoacán del IGf de la UNAM, y director del Servicio de Clima Espacial México

• La misión de la sonda es acercarse más que cualquier otra nave para analizar la atmósfera del Sol, del que depende la vida en la Tierra. Se estima que llegará al punto más cercano en 2025.

El domingo pasado la sonda solar Parker inició su viaje al Sol, con la meta de aproximarse lo más posible, más que cualquier nave hasta ahora, a nuestra estrella. Se espera que en noviembre alcance la corona solar, y que llegue al punto más cercano en 2025.

Luego de tres intentos fallidos, la Agencia Aeroespacial de Estados Unidos (NASA) logró el lanzamiento desde Cabo Cañaveral, Florida. La sonda analizará la atmósfera de la estrella, de la que depende la vida en la Tierra.

“Estamos muy contentos. Es una misión importante que responderá preguntas que nos han intrigado por más de 60 años. Con los datos que se obtengan esperamos entender por qué su atmósfera es tan caliente, uno de los cuestionamientos de la física solar aún sin respuesta”, afirmó Juan Américo González Esparza, investigador del Instituto de Geofísica (IGf) de la UNAM.

El también jefe del Servicio de Clima Espacial México (SCiESMEX) –uno de los servicios que brinda el IGf unidad Michoacán y que está adscrito al Laboratorio Nacional de Clima Espacial (LANCE), también coordinado por él– indicó que la superficie del Sol tiene una temperatura de seis mil grados, por eso emite luz visible y en amarillo, principalmente.

“Pero su atmósfera, una capa más externa, está mucho más caliente y alcanza un millón de grados. Cómo se produce este calentamiento de la corona solar es algo que aún no tiene respuesta científica, y es relevante porque el Sol es nuestra estrella más cercana, y entender su física nos ayuda a comprender cómo es la de todas las estrellas”, explicó.

Viaje a 700 mil kilómetros por hora

La sonda solar Parker se convertirá en la nave más rápida construida por el ser humano: alcanzará casi los 700 mil kilómetros por hora. “Ha sido lanzada con uno de los cohetes más poderosos de la NASA, porque tenía que lograr una gran velocidad para acercarse al Sol”, detalló el doctor en física.

González Esparza detalló que la misión se hace sobre la Tierra, que se desplaza a 30 kilómetros por segundo alrededor de la estrella. “Para lanzar algo hacia el Sol primero tenemos que cancelar esa velocidad tangencial, y es por eso que es tan difícil hacerlo”.

Para sacar un satélite al espacio, el cohete debe alcanzar una velocidad aproximada de 11 kilómetros por segundo, pero nuestro planeta gira alrededor del Sol a 30 kilómetros por segundo, así que se requiere de un aparato muy poderoso, que además acelere y alcance la máxima velocidad posible saliendo de la Tierra.

Después, la sonda Parker se dirigirá a Venus y aprovechará la atracción de ese cuerpo celeste, que le dará un “jalón gravitacional” y la acelerará rumbo a nuestra estrella. “Dará vueltas alrededor de Venus y del Sol para tener mayor velocidad y poder acercarse cada vez más”.

Cerca de nuestra estrella

Además de la velocidad, Parker batirá un segundo récord: será la nave con mayor aproximación al Sol, siete veces más que Helios 2, la que más se aventuró en el pasado. La sonda aprovechará la gravedad de Venus para frenarse hasta en siete ocasiones, y gracias a estas maniobras se colocará a sólo 6.16 millones de kilómetros de su objetivo, más o menos 16 veces la distancia que hay entre la Tierra y la Luna. En sus siete años de misión programados, que se pueden prorrogar, completará 24 órbitas en torno a la estrella.

Para saber qué tanto se acercará, la investigadora principal de la misión, Nicola Fox (compañera de González Esparza en el Imperial College de Londres), ejemplificó que si pensáramos en la distancia entre el Sol y la Tierra como un campo de futbol americano con 100 yardas, la misión Parker se acercará a la yarda tres: “va a estar muy cerca del Sol”, refirió González Esparza.

La sonda está diseñada para soportar altas temperaturas, y una de las claves es un escudo térmico de 2.4 metros de diámetro y 14 centímetros de grosor, de una composición similar a las placas cerámicas de transbordadores espaciales, que frenará el viento solar y se calentará hasta los mil 400 grados Celsius, una temperatura mayor que la lava.

En honor al padre del viento solar

En esta misión, por primera vez en su historia la NASA honra a un científico vivo al designar su nombre a una nave espacial: Eugene Newman Parker, el padre del viento solar, es un astrofísico de la Universidad de Chicago, de 91 años de edad, que en 1958 fue pionero al acuñar la teoría de los vientos supersónicos solares.

“Parker hizo un modelo que explicó que el Sol no iba a ser capaz de contener a su atmósfera (muy caliente), y que ésta se empezaría a escapar formando un viento. Esto iba en contra de lo que los astrofísicos pensaban en aquel momento. Él demostró que la atmósfera de las estrellas se escapa como un viento con velocidades muy altas, y a esto le llamó ‘viento solar’”, finalizó González Esparza.

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

www.unamglobal.unam.mx 

 

 

Publicado en Tecnologia

Morelia, Michoacán. (Agencia Informativa Conacyt).- El paraíso de ciénegas, fauna ancestral, humedad y árboles de frutos y sombra terminó por la glaciación provocada por la caída de 18 millones de toneladas de meteorito en fragmentos hace 12 mil 800 años. ¿Imaginas un pasado de humedad, abundante y desconocida vegetación como alimento de gonfoterios, perezosos, bisontes, mamuts, huyendo por la ciénega del diente de sable? Las tierras michoacanas que hoy caminamos están construidas sobre el suelo que pisaron diversos animales ancestrales.

En un instante, el dióxido de carbono (CO2) llenó el ambiente y un incendio lo quemó todo, la Tierra ingresó en una nueva era de hielo, que desde muchos años se había atribuido al desprendimiento de un bloque de hielo entre Canadá y el noreste de Estados Unidos. Pero nunca se estudió el motivo de ese desprendimiento.

Las investigaciones de la doctora en ciencias de la Tierra Isabel Israde Alcántara, adscrita al Instituto de Investigaciones en Ciencias de la Tierra y miembro nivel II del Sistema Nacional de Investigadores (SNI), han ayudado a esclarecer que fue un meteorito el que causó la glaciación hace 12 mil 800 años.

La doctora se ha dedicado a buscar en diferentes partes de México evidencias de un impacto cósmico que tuvo muchas repercusiones desde el punto de vista geológico y ambiental.

Esto lo logró a partir del estudio de los lagos de Michoacán, específicamente el lago de Cuitzeo, que fue el que le dio el primer indicio.

El ciclo de las glaciaciones

"Cada 100 mil años, por los últimos dos millones, ha habido glaciaciones, es un ciclo de 100 mil años fríos y 10 mil años cálidos. A pesar de esa regla imperante, hubo una interrupción hace 18 mil años, cuando correspondía estar en tiempos cálidos, hubo un descenso abrupto de temperaturas que acabó con la vida animal y vegetal".

La científica afirma que se creía que era por el desprendimiento de un bloque de hielo proveniente del norte de América, frenando los sistemas de convección marina cálida y ese freno controló también la evaporación del agua, deteniendo las condiciones tibias de los continentes.

La causa de ese desprendimiento fue una incógnita por mucho tiempo, hasta 2007 que el investigador Richard Firestone encontró en Groenlandia una capa de combustión en los hielos.

“Ahora que se han roto muchas capas de hielo por el cambio climático, han quedado expuestas capas antiguas de hielo, esto permitió que el doctor viera una capa de carbono que pudo fechar arrojando que pertenecía a hace 12 mil 800 años".

Con estos datos, Firestone postuló la teoría de un impacto cósmico que catalizó el desprendimiento del bloque de hielo, generando las condiciones de un invierno nuclear por el impacto, la onda de choque, radiación y los vientos, señala la doctora. Eso acarreó carbón incendiando los bosques y haciendo que ese material subiera por la atmósfera depositándose en las capas de hielo. Es por eso que el investigador pudo encontrarlo en esas capas expuestas por el calentamiento global.

Relación del meteorito con los lagos michoacanos

Isabel Israde tiene una especialidad en estratigrafía, que es el estudio de las capas de la Tierra, y explica que las algas diatomeas pueden decir mucho sobre el pasado, debido a que a pesar de que su vida es de apenas 30 días, tienen un esqueleto de sílice que resguarda información y permite estudiar el pasado a partir de su estructura.

Desde que terminó su tesis ha estudiado los lagos de Michoacán, con el objetivo de entender si los episodios de los lagos han sido cíclicos o aleatorios. "Los lagos son como tinas, cualquier cosa que eches cae en el centro, por lo que estudiándolos podríamos entender el impacto del hombre y detallar la actividad volcánica".

En su estudio, introducían una especie de popotes de metal que colectan información de las capas de la Tierra que se encuentran debajo de los lagos, pudiendo ver el paso de los años según la profundidad. En 1998, sacaron un núcleo muy largo del centro del lago de Cuitzeo, que tardaron tres años en analizar en cada una de sus capas.

Encontraron en cada estudio que siempre había una capa donde aumentaba mucho el nivel del lago; sin embargo, afirmaban que se debía a un error en el análisis. La doctora sabía que no era así, pero siguió trabajando la muestra.

"Las algas tienen preferencias, tolerancias y exigencias del lugar en el que se encuentran. Las que encontraron en esa capa que estudiaron tenían preferencia de lugares de aguas profundas; sin embargo, eso no coincidía con el lago Cuitzeo que tiene una profundidad media de tres metros".

La investigadora no entendía por qué fue profundo, porque además esta característica duró poco tiempo porque solo estaba en 10 centímetros de sedimentos, ubicado a 2.85 metros del sustrato del lago, de los 27 metros que analizaron.

En esa capa encontraron un nivel de carbón e hicieron los fechamientos.

¿Burbujas espaciales en el microscopio?

En el microscopio óptico, Isabel Israde vio que había esférulas que siempre se encontraban cuando observaban las diatomeas. Intentaron combinarlas con diferentes sustancias para disiparlas, "pero como son de hierro se ponían más brillantes y hermosas".

Al principio creía que se trataba de burbujas de agua; sin embargo, "se trataba de esférulas, que son cuerpos redondos que tienen una ornamentación en forma de coliflor o estructuras de filigrana, que se dan por un enfriamiento muy rápido".

La doctora señala que ahora saben que se dio por el choque con la atmósfera, "las esférulas chocaron entre sí hasta casi fusionarse, aunque no por completo", afirma que tienen arrugamientos producidos por la fusión del metal y que había otras en forma de gota con la misma ornamentación.

Estas esférulas le dieron evidencia incluso de la dirección del viento cósmico en el momento en que se produjo el choque con la atmósfera. "Las esférulas son una evidencia de materiales cósmicos, también existen como productos industriales, pero se encontraron sepultadas a tres metros del actual lago, por lo que no pudieron haberse sepultado ahí en la historia del ser humano".

Encontraron nanodiamantes

El sesgo que había en las profundidades los hizo estudiar cada tres centímetros el núcleo, este trabajo implicó mucho tiempo porque cada muestra lleva varias semanas, señala la doctora. Cuando terminaron, reunieron los datos de esférulas, análisis de polen, diatomeas, los cambios en los estratos y los enviaron a analizar mediante una técnica que permite detectar nanodiamantes.

"Los diamantes detectados en esa capa de los estratos indican que hubo temperaturas mayores a las emitidas en una explosión volcánica, que se generan con la presión y temperatura a la que se expone el carbón".

Ya tenían todos los proxies, por lo que la doctora pudo comenzar a escribir las conclusiones de su investigación.

Ha sido un meteorito

En ese mismo tiempo, hace 12 mil 800 años se dio una desaparición importante del ser humano, anteriormente se creía que se debió a una infección y que solo había sido en Estados Unidos y Canadá.

Comenzaron a detectar esas coincidencias, del carbón encontrado en las capas de hielo, la desaparición del ser humano, las inconsistencias de profundidad y los nanodiamantes en el lago de Cuitzeo. Se reunió un grupo de investigadores de todo el mundo para encontrar evidencias en diferentes países.

Isabel Israde concluyó que todos estos fenómenos pudieron haber estado causados por un impacto cósmico en muchas partes de la Tierra.

"No fue solo un meteorito, fueron muchos pedazos de uno que se fragmentó afuera del planeta. Hemos encontrado pedazos en Bélgica, Siria, Venezuela, España, Italia, Rusia, entre otros".

Calcularon que cayeron alrededor de 18 millones de toneladas de pedazos de meteorito en el mundo.

"Este meteorito proviene de la nube de Oort, que se encuentra más allá de Neptuno. Se trata de un basurero galáctico sin órbita donde fue a parar todo lo que se produjo en el Big Bang que no se hizo planeta, como vagan sin rumbo pueden generar colapsos".

Señala que lo que habían podido ver los geólogos, son las que se encontraban en la superficie; sin embargo, ella siempre ha pensado que se tienen que observar los lagos.

¿Quedó solo en Cuitzeo?

¿Qué pasa si hay lagos más grandes que pudieron haber funcionado como cápsulas del tiempo, permitiendo que se almacenara en los sedimentos la evidencia hasta que la descubriéramos?, se pregunta la investigadora. Es por ello que está haciendo viajes a diferentes medios sedimentarios, desiertos, lagos, ciénegas, selvas.

Sometió el proyecto al Fondo Conacyt de Ciencia Básica y lo ha obtenido durante tres años consecutivos. Ella sabía que su descubrimiento era importante.

En este trayecto ya han encontrado otras evidencias como la de Cuitzeo, Chapala, Acambay, Valle de Santiago, Tocuila y Chalco. En Tocuila se encontraron nueve mamuts sobre los que se hallaban las capas que arrojaban datos sobre el meteorito.

Para la investigadora, estos hallazgos son importantes por una razón muy simple: "Muestran la fragilidad del ser humano. Cuando ocurre un evento como ese, extermina todo. No nos damos cuenta que somos solo un punto en el espacio".

Esta obra cuyo autor es Agencia Informativa Conacyt está bajo una licencia de Reconocimiento 4.0 Internacional de Creative Commons.

 

 

 

 

Publicado en Tecnologia

El hallazgo tiene implicaciones importantes para la ciencia, consideró Rafael Navarro, del Instituto de Ciencias Nucleares de la UNAM.

La probabilidad de que existan más lagos es alta, pues sólo se ha revisado menos del 10 por ciento de la superficie del polo sur de ese planeta, indicó.

Científicos europeos descubrieron un lago con agua líquida en Marte, hecho que amplía la posibilidad de que actualmente haya vida en el planeta rojo.

Rafael Navarro González, del Instituto de Ciencias Nucleares (ICN) de la UNAM, precisó que el hallazgo se hizo en una región del polo sur marciano, formada por numerosas capas de hielo y polvo, con una profundidad máxima de 1.5 kilómetros, en una zona de 20 kilómetros de diámetro. Ahí se identificó una reflexión especialmente brillante de las ondas sonoras detectadas por el radar MARSIS bajo las capas de los depósitos.

El doctor en Química por la Universidad de Maryland, y quien colabora con la NASA y la Agencia Espacial Europea (ESA) en la exploración de Marte, explicó que para encontrar el cuerpo de agua científicos italianos utilizaron el radar MARSIS (a bordo de la sonda europea Mars Express), que envía pulsos de sonido a la superficie de ese planeta para medir cuánto tardan en regresar a la nave, así como su intensidad; “llevó mucho tiempo revisar los diferentes tipos de reflexión”.

Mars Express monitorea la superficie, pero no puede revisar el planeta en su totalidad. Ha logrado mapear menos del 10 por ciento de la superficie del polo sur; entonces, es muy probable que haya más cuerpos de agua líquida que no han sido explorados, destacó el astrobiólogo.

El hallazgo tiene implicaciones importantes para la ciencia, pues abre la posibilidad de que exista vida en la región, además de que plantea preguntas como ¿cuál sería la fuente de energía que la ha mantenido por todo este tiempo?

Navarro, colaborador de la misión Curiosity de la NASA, indicó que se sabe que la fotosíntesis no puede ocurrir en el área monitoreada debido al grosor y profundidad de la capa de hielo, que no permite la llegada de luz. “La región estaría completamente oscura, y por consiguiente, de haber vida microbiana, sería de tipo quimiosintética, es decir, que toma energía de reacciones químicas, como las bacterias metanógenas”.

Además, la existencia de organismos macroscópicos (como los conocemos) es imposible, pues requieren de mayor cantidad de energía, lo que implica el uso de oxígeno, y en la zona hay condiciones anaeróbicas.

Otra limitante, reflexionó, es la entrada de nutrientes, pues el lago está completamente cerrado; no se podría dar el intercambio de nutrientes y eso restringe la cantidad de biósfera que pudiera existir.

El científico mexicano destacó que otra incógnita es saber qué mantiene al lago en forma líquida. Se estima que la presencia de sales es fundamental en condiciones por debajo de cero grados, pero podría haber fuentes hidrotermales u otro tipo de energía.

La misión InSight de la NASA, que actualmente se dirige al planeta rojo, ofrecerá información importante para saber lo que ocurre, pues lleva consigo un sismógrafo que aportará conocimiento sobre la potencial actividad tectónica.

Sobre la posibilidad de usar el líquido encontrado en futuras misiones espaciales, el universitario destacó que existen protocolos internacionales de protección planetaria para la utilización de recursos en otros planetas, aunque no se descarta la posibilidad de aprovecharla para uso humano u obtención de combustibles.

“Sabemos que hay otros sitios en Marte donde hay agua, por ejemplo, en el área ártica, en donde la misión Phoenix detectó hielo”, añadió. Pero también se podría tener acceso a otras fuentes de agua, y para eso está la misión ExoMars, en la que participa, que intentará capturar líquido de la atmósfera para uso humano.

El lago, acotó, complementa el reciente anuncio de agua en la vida pasada del planeta rojo, descubrimiento realizado por el robot Curiosity, lo que aumenta las expectativas de trabajo.

Pero “el gran hallazgo será tener evidencia de biosfera en Marte, porque cambiará la biología terrícola y nos llevará a una biología universal”.

Finalmente, estimó necesario enviar más misiones de exploración a los polos, tarea difícil por la cantidad de luz y energía que reciben los equipos. “Pero ahora se sabe que en esas áreas hay más posibilidades de encontrar vida, respecto a las zonas ecuatoriales, en donde actualmente se encuentra Curiosity”.

—oOo—

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

 

www.unamglobal.unam.mx

Publicado en Tecnologia

Ubican entre galaxias la mitad de la materia ordinaria del Universo, de la que está hecho todo lo que vemos, incluidos los seres vivos.
En el estudio participaron 21 científicos de seis países, entre ellos Yair Krongold Herrera, integrante del Instituto de Astronomía de esta casa de estudios.
El hallazgo, publicado en la revista Nature, avanzará nuevas investigaciones para entender la formación de las galaxias y su estructura actual.

Hasta ahora estaba perdida y su ubicación era una pregunta abierta para la astronomía. Pero después de 12 años de investigación, un grupo internacional formado por 21 científicos de seis países encontró entre las galaxias, en forma de filamentos, la mitad de la llamada “materia ordinaria” del Universo, aquella con la que está hecho todo lo que vemos, incluidos los seres vivos.

“No sabíamos dónde estaba la mitad de la materia ordinaria, no se podía haber desintegrado y tendría que estar en algún lado”. El estudio fortalece la teoría de la Gran Explosión o Big Bang, que predice cuánta materia ordinaria debió formarse durante el surgimiento del Universo, indicó Yair Krongold Herrera del Instituto de Astronomía (IA) de la UNAM y quien participó en este hallazgo científico, publicado recientemente en la revista Nature.

De acuerdo con cálculos recientes, la materia ordinaria es apenas el 4% de la masa del Universo. El 23% está formado por materia oscura y el 73% por energía oscura, ambas aún indetectables. Ubicar el 50% de materia ordinaria, que está hecha de átomos, confirma experimentalmente hipótesis teóricas y ayuda a los astrónomos a tener una pequeña pieza del rompecabezas que describe la estructura cósmica.

Para detectar la mitad de la materia ordinaria en el medio intergaláctico, los astrónomos recurrieron a los telescopios espaciales XMM-Newton, de la Agencia Espacial Europea (ESA), y Hubble, proyecto conjunto de la Agencia Espacial de Estados Unidos (NASA) y la ESA, así como al terrestre Gran Telescopio Canarias, que opera un consorcio internacional bajo el liderazgo del Instituto de Astrofísica de Canarias en España.

Según el experto del IA de la UNAM, hay coincidencia, al comparar la cantidad de materia ordinaria predicha por el Big Bang con la información inferida de la luz remanente del Universo muy joven (conocida como radiación cósmica de fondo); también la hay con la cantidad de materia observada en el Universo distante. Pero cuando se trata de distancias más cercanas a nosotros, se pierde paulatinamente evidencia de esta materia.

Además de Yair Krongold, por parte de México participaron Divakara Mayya y Daniel Rosa González, ambos del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE).

Dos filamentos

La estructura del Universo es una telaraña cósmica formada por muchos hilos de gas muy caliente que se entremezclan y a veces se fusionan para crear galaxias. “Lo que descubrimos fueron dos filamentos, en donde se veía material muy caliente y tenue”, explicó.

“Se detectaron en rayos X y en ultravioleta”. A estas dos “miradas” desde el espacio, sumaron una tercera desde la Tierra, con el Gran Telescopio Canarias. Sin embargo, el estudio tiene una sola línea de visión.

“Es importante avanzar hacia otros objetos porque así podremos entender además cuál es el estado físico de esta materia. Eso nos da una pista sobre cómo han sido los procesos de formación de las galaxias”.

El siguiente paso, adelantó, es observar (con el método ya diseñado y probado) hacia otros lados, y a través de eso podremos entender mejor cómo se han formado las galaxias, cómo han evolucionado y su crecimiento desde el big bang.

—oOo—

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

www.unamglobal.unam.mx

 

 

Publicado en Tecnologia

Marte es hermoso y desconocido.

La Agencia Espacial Europea (ESA por sus siglas en inglés) presentó una sorprendente imagen captada por la Mars Express, la sonda de exploración que sobrevuela Marte.

La imagen muestra una tormenta de arena que se arremolina de manera temible en casi toda la región del polo norte marciano. El impresionante fenómeno fue captado gracias a la High Resolution Stereo Camera, una increíblemente potente cámara de alta resolución que viene equipada en la Mars Express.

Los astrónomos del Centro Aeroespacial Alemán, quienes administran el sistema de la cámara, aseguran que la panorámica se tomó el pasado 3 de abril.

La región que cubre la tormenta de arena en la imagen se conoce como Utopía Planitia, una de las zonas que más a estudiado Mars Express desde su arribo a Marte.

La tormenta de arena es uno de los muchos eventos a pequeña escala que tuvieron lugar en Marte en los últimos meses. Y fue un antecedente de una tormenta similar, pero que cubrió todo el planeta, tan sólo unos meses después.

En realidad, las tormentas de arena son muy comunes en Marte, incluso Opportunity, el rover explorador de la NASA, ha tenido que hibernar varias veces para esperar que se detenga alguno de estos fenómenos.
 

FUENTE Science News

Publicado en Ciencia
Página 1 de 20
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.