De entre los elementos químicos que componen el cuerpo humano solamente el hidrógeno tiene su origen en el Big Bang, hace 13 mil 800 millones de años; ya que durante los primeros cuatro minutos de la Gran Explosión se crearon el hidrógeno y el helio. Debido a que se formaron estrellas de diferentes masas, objetos celestes que forman en su interior todos los demás elementos de la tabla periódica presentes en el Universo, solemos escuchar que “somos polvo de estrellas”, explicó la astrónoma Silvia Torres Castilleja, durante la conferencia “La vida íntima de las estrellas”.

“El Sol, por ejemplo, es un tipo de estrella muy común, está quemando hidrógeno y se calcula que tiene una edad de unos 4 mil 600 millones de años y se estima que le quedan otros 5 mil 600 millones de años, antes de comenzar a apagarse y convertirse en una enana blanca”.

Cómo nacen las estrellas

Las estrellas se forman de nubes de gas en una contracción que calienta su interior, lo que provoca que haya reacciones nucleares. En particular del hidrógeno se produce helio. Este proceso es muy eficiente y dura muchísimos años, dependiendo de la masa inicial con que se forma cada estrella. En muchos casos las estrellas, cuando se acaban el combustible nuclear en su interior, explotan, lanzan material al espacio, el cual se junta con otras nubes de gas para volver a formar estrellas. Es un ciclo continuo, mientras haya suficiente gas en el espacio. “Son las de mayor masa las que explotan (las de más de ocho masas solares). Estas estrellas, aunque tienen mucha energía disponible, la emiten en forma tan acelerada que en tan sólo cinco millones de años se acaban”.

Torres Castilleja, quien fue la primera mexicana es asumir la presidencia de la Unión Astronómica Internacional (UAI), —la segunda mujer en este cargo desde 1919, y que concluyó en 2018—, explicó que “las estrellas obtienen su energía de transmutar en su interior hidrógeno en helio por medio de reacciones de fusión nuclear. Al acabarse el hidrógeno en sus regiones centrales, una fracción importante de las estrellas que nacen con menos de ocho masas solares, como el Sol, se convierten en gigantes rojas y entonces el helio se transmuta en carbono. Cuando el helio se agota en el núcleo de la estrella, esta expulsa sus capas externas al medio interestelar”.

Después, la parte central de la estrella, a muy alta temperatura, queda expuesta a ese medio y se convierte en una enana blanca: una estrella sin reacciones nucleares, que inicialmente está muy caliente y poco a poco se va enfriando. Las capas expulsadas son entonces ionizadas por el candente núcleo —el remanente de la estrella—, formando así una nebulosa planetaria. La nebulosa se dispersa y pierde brillo hasta hacerse invisible en aproximadamente 10 mil años, lapso muy corto comparado con el que le toma a la estrella transmutar su hidrógeno en helio, que es de miles de millones de años.

La astrónoma dijo que los modelos teóricos de la estructura y evolución de las estrellas predicen que las estrellas que se forman con menos de ocho masas solares, hacia el final de su evolución, también perderán sus capas externas, las cuales han sido contaminadas previamente con material enriquecido en el interior por las reacciones nucleares. Son responsables de arrojar pequeñas cantidades helio recién formado, carbono y nitrógeno. Aunque estas cantidades son modestas, estas estrellas son muy numerosas y por lo tanto su contribución a modificar los gases del espacio resulta importante.

Por otro lado, los modelos de estrellas que nacen con más de ocho masas solares predicen que éstas terminarán su existencia en una explosión llamada “de supernova” y que son responsables de la producción de la mitad del helio de origen no primordial, de la mitad del carbono, del 20% del nitrógeno, y de la totalidad del oxígeno, neón, sodio, magnesio, aluminio, silicio, azufre, cloro y argón.

Por último, se estima que la cantidad de helio formado por el conjunto de todas las estrellas y expulsado al medio interestelar durante la evolución de nuestra galaxia, es apenas de alrededor del 10% del helio formado durante los primeros cuatro minutos siguientes al inicio de la expansión del Universo (la Gran Explosión).

“Gracias al estudio de la composición química de nebulosas planetarias en la Vía Láctea, se han encontrado gradientes en las abundancias de nitrógeno, oxígeno, neón y argón con relación al hidrógeno; específicamente, las abundancias de estos elementos, relativas a la del hidrógeno, disminuyen con las distancias a las que se encuentran del centro de nuestra galaxia las nebulosas planetarias en las que se miden”.

Recordó que el cuerpo humano también está compuesto por elementos químicos diferentes. Una docena de ellos están presentes en mayores cantidades como el Oxígeno (65 %), el Carbono (18 %), el Hidrógeno (10 %), Nitrógeno (3 %), Calcio (1.5 %), Fósforo (1 %), Potasio (0.25 %), Azufre (0.25 %), Sodio (0.15 %), Cloro (0.15 %), Magnesio (0.05 %), Hierro (0.006 %). Otros elementos químicos que constituyen el cuerpo humano son el cobre, zinc, selenio, molibdeno, flúor, yodo, manganeso, cobalto, litio, estroncio, aluminio, silicio, plomo, vanadio y arsénico, entre otros en proporciones ínfimas. Por eso decimos que “somos polvo de estrellas”.

 

Publicado en Tecnologia

Con el fin de generar una cultura del conocimiento científico y fomentar vocaciones, universitarios pusieron en marcha el proyecto “Estrelleros, astronomía en hospitales”, pensado para entretener y hacer amena la espera de niños y adolescentes que son atendidos en hospitales de la Ciudad de México.

Queremos maravillar, emocionar, motivar y generar curiosidad en ellos, además de distraerlos un poco, explicó Gloria Delgado Inglada, académica del Instituto de Astronomía (IA) de la UNAM, quien dirige este proyecto junto con Diego López Camarena, de la misma entidad.

“En Estrelleros intentamos que aprendan un poco de astronomía y que se animen a ser profesionistas en esta área. Muchos de nosotros estamos acostumbrados a hacer actividades de divulgación, incluso entre nosotros, cuando hablamos con otros colegas sobre nuestros temas de investigación, pero el lenguaje que utilizamos con los niños es adecuado para su edad”, aclaró.

En su visita al Hospital Shriners para Niños, en la Ciudad de México, la universitaria comentó que ésta es la primera actividad del proyecto, apoyado por el Consejo Nacional de Ciencia y Tecnología (Conacyt). La idea es acudir a otros hospitales, “estamos en conversaciones con el Instituto Nacional de Pediatría, la próxima institución a visitar”.

Pequeños astrónomos

Así, por unas horas niños y adolescentes olvidaron el motivo que los llevó al hospital. De la mano de sus “cienciaterapeutas” se convirtieron en pequeños astrónomos, imaginaron a seres de otras galaxias, viajaron en una misión a la Luna, conocieron su planeta desde el exterior y la forma esférica de las estrellas, entintaron el Sistema Solar, incluso escucharon la música del Universo.

También observaron el Sol a través de telescopios, accedieron al planetario móvil y se tomaron fotos en la réplica a escala de un transbordador espacial, todo instalado en el patio central del hospital, siempre en compañía de un grupo de 20 astrónomos, académicos y estudiantes de posgrado.

La astronomía en general es un tema apasionante, es la disciplina científica más llamativa para la mayoría y todos pueden aprender. “Basta con levantar la mirada al cielo y ahí, frente a nuestros ojos, está la astronomía”, subrayó Delgado Inglada.

Por su parte, Diego López reiteró que estas actividades lúdicas pretenden entretener e informar a niños y familiares en lugares que no son divertidos, como los hospitales.

Los astrónomos universitarios visitan a los pequeños hospitalizados para platicar con ellos y hacerles un obsequio, como relojes solares, naves espaciales o postales con imágenes astronómicas.

“Buscamos acompañarlos un rato en un momento poco amable, para que olviden sus problemas de salud, e invitarlos a evadir la realidad pensando en galaxias y estrellas”, detalló.

Para muchos un astrónomo es una persona especial y piensan que no cualquiera puede dedicarse a esta ciencia, “así que también queremos desmitificar esta idea, que sepan que cualquiera puede dedicarse a la astronomía“, finalizó.

 

 

 

Publicado en Tecnologia

Conforman un sistema binario, a sólo un segundo luz de distancia: Sebastián Sánchez, del Instituto de Investigaciones Astronómicas.

Existen muchos planetas fuera del Sistema Solar, pero ninguno como el nuestro, y eso se debe a la Luna; por ello, tenemos una responsabilidad de vida con nuestro mundo, dijo.

En nuestro planeta no habría vida como la conocemos si no existiera la Luna. La Tierra y su satélite natural conforman un sistema binario, a sólo un segundo luz de distancia, afirmó Sebastián Sánchez, del Instituto de Investigaciones Astronómicas (IIA) de la UNAM.

“La Tierra parece tener una compañera muy inusual, que estabiliza el eje de rotación del globo terráqueo al retrasar su órbita; además, la protege de choques en el espacio”, dijo.

La Luna no sólo ha iluminado el lenguaje y el arte de quienes habitamos este mundo; la ciencia ha expuesto con rigor que su relación es única y va más allá del Sistema Solar.

En el auditorio Paris Pishmish, el exinvestigador del Instituto de Astrofísica de Andalucía, España, mencionó que el choque que dio lugar al sistema Tierra-Luna pudo tener importancia para la eliminación de la atmósfera primigenia, pues sin ello nuestra atmósfera sería altamente densa, como la de Venus.

Somos el único planeta con actividad tectónica, y eso se atribuye al exceso de calor interno, provocado por dicho sistema; además, crea el fenómeno de las mareas, que ocurre dos veces al día.

“Existen muchos planetas fuera del Sistema Solar, pero ninguno como el nuestro, y eso también se debe a la Luna; por ello, tenemos una responsabilidad de vida con nuestro mundo, porque es muy probable que no podamos habitar otro”, subrayó.

Es la historia de un amor...

La Tierra y la Luna se conocieron desde su génesis. En palabras de Sebastián Sánchez, los materiales de la Luna pesan menos que los de la Tierra; no obstante, es el segundo satélite más denso de todo el Sistema Solar.

“La distancia entre ambas es de 384 mil 400 kilómetros, podría considerarse demasiada, pero en otro rango, están separadas por sólo 1.3 segundos-luz; sin embargo, la Luna ‘ha decidido’ alejarse 3.8 centímetros anuales”, dijo el investigador.

Aunque la corteza lunar se asemeja a la Tierra, con valles, accidentes geográficos, montañas y cordilleras (no volcánicos), la Luna está totalmente bombardeada y plagada de cráteres por el impacto de meteoritos.

“Su corteza está compuesta por 43 por ciento oxígeno, 21 por ciento silicio, 10 por ciento aluminio, nueve por ciento de calcio y hierro, cinco por ciento de magnesio y dos por ciento de titanio”, detalló.

El investigador del IA hizo un recuento de las aventuras humanas a la Luna. Aunque reconoció que de manera controversial el primer alunizaje fue fraguado el 20 de julio de 1969, en una misión estadounidense, se ha olvidado que desde tiempo atrás se intentó llegar al satélite natural de la Tierra.

Se han hecho más de 20 viajes entre sondas y alunizajes no tripulados y tripulados. El primer aparato en llegar a la Luna fue de los soviéticos, el 12 de septiembre de 1959, y la última misión, el 3 de enero de 2019, estuvo a cargo del programa espacial chino, concluyó.

 

 

Publicado en Tecnologia

• Didier Queloz, colaborador en el observatorio SAINT-EX, fue uno de los descubridores de “51 Pegasi b”, planeta similar a Júpiter, que da la vuelta a su estrella en tan solo cuatro días

• El hallazgo fue un parteaguas sobre lo que se conocía de todos los sistemas planetarios; revolucionó la astronomía y permitió el descubrimiento de más de cuatro mil exoplanetas en la Vía Láctea

Didier Queloz, colaborador en el observatorio SAINT-EX de la UNAM e investigador de la Universidad de Cambridge, es uno de los ganadores del Premio Nobel de Física 2019, que otorga la Real Academia de las Ciencias de Suecia.

Queloz y Michel Mayor (de la Universidad de Ginebra), ambos de origen suizo, son premiados por el descubrimiento del primer planeta fuera del Sistema Solar (exoplaneta) que orbita una estrella similar a nuestro Sol. En tanto, el canadiense James Peebles, de la Universidad de Princeton, es galardonado por sus descubrimientos teóricos en cosmología.

Desde 2016, Didier Queloz participa en el observatorio SAINT-EX (Search and Characterisation of Transiting Exoplanets) de esta casa de estudios, cuyo objetivo es encontrar, desde el Observatorio Astronómico Nacional de San Pedro Mártir, exoplanetas alrededor de las estrellas más pequeñas y frías del Universo, explicó Yilen Gómez Maqueo Chew, coordinadora de este proyecto internacional y responsable del mismo en México.

“Observamos estrellas cercanas al Sol, pues por ser poco luminosas y con poca masa no se alcanzan a ver muy lejos. Estamos en el vecindario solar, cerca en escala astronómica, pero no podemos ir allá”, enfatizó la también investigadora del Instituto de Astronomía (IA) de la UNAM.

Exoplaneta similar a Júpiter

Gómez Maqueo Chew indicó que Queloz y Mayor descubrieron “51 Pegasi b”, un planeta similar a Júpiter, que da la vuelta a su estrella en tan solo cuatro días, y no en 11 años, como lo hace el gigante del Sistema Solar.

La universitaria detalló que ya se conocían algunos exoplanetas que orbitaban una estrella de neutrones, pero no parecida a nuestro Sol, pero se creía que si eran semejantes, sus planetas deberían comportarse de manera parecida a los de nuestro Sistema Solar.

Partiendo de esa premisa, si hubiera un planeta como Mercurio debería dar la vuelta a su sol en 88 días; uno como la Tierra, en 365; y uno como Júpiter, en 11 años. Pero en octubre de 1995, los ganadores del Nobel anunciaron el hallazgo de “51 Pegasi b”, un gigante gaseoso que giraba alrededor de su estrella en cuatro días.

“Entonces se plantó la semilla para estudiar más a fondo cómo se forman los sistemas planetarios y cómo evolucionan. Las implicaciones fueron muchas, porque no había que esperar 11 años a que el planeta rodeara a su estrella, sino días. La mayoría de los exoplanetas que se conocen hasta ahora tienen órbitas de días”, enfatizó la experta.

Esto llevó a una revolución en la astronomía y permitió el descubrimiento de más de cuatro mil exoplanetas en la Vía Láctea, por lo que “51 Pegasi b” se convirtió en un parteaguas sobre lo que se conocía del Sistema Solar, cambiando las ideas de cómo se forman los sistemas planetarios diferentes al nuestro.

Cosmología, disciplina de alta precisión

Las aportaciones de Jim Peebles, cosmólogo y astrofísico, han contribuido a transformar la cosmología de una disciplina considerada especulativa, a una de alta precisión. Ha logrado establecer un escenario muy completo de la evolución del Universo.

Vladimir Ávila, experto del Instituto de Astronomía, explicó que Peebles cimentó las bases del entendimiento de las casi imperceptibles fluctuaciones en temperatura de la radiación cósmica de fondo en microondas que baña al Universo, y que son las semillas de las galaxias.

“Los estudios de Peebles dieron origen a toda una nueva disciplina que él mismo bautizó como “anisotronomía”, y gracias a la cual es posible medir con precisión los parámetros cosmológicos del Universo. “Hemos podido acercarnos a su origen, cuándo se produjeron las fluctuaciones que, luego de evolucionar como él predijo, quedaron impresas en la radiación cósmica de fondo”, resaltó.

Sus investigaciones condujeron al modelo cosmológico más aceptado en la actualidad, donde la materia oscura fría domina sobre la ordinaria, siendo una componente invisible por definición, pero capaz de producir gravedad y propiciar el molde donde se forman las galaxias y, dentro de ellas, las estrellas y planetas.

“La cosmología se ha desarrollado mucho más allá de lo que Peebles o alguien más haya soñado hace medio siglo, y hoy sostiene que nuestro paradigma actual aún está incompleto, que hay mucho más por hacer”, concluyó.

 

 

Publicado en Tecnologia

 Danton Iván Bazaldua Morquecho, de la Facultad de Ingeniería, participará en la misión que se llevará a cabo en la Universidad de Dakota del Norte.

 Financiada por la NASA, el objetivo es probar y desarrollar tecnología espacial con el apoyo del Programa Espacial Universitario y la Agencia Espacial Mexicana.

Danton Iván Bazaldua Morquecho, estudiante de la Facultad de Ingeniería (FI) de la UNAM, comandará la tripulación latinoamericana en la octava misión análoga a Marte, que se llevará a cabo en la Universidad de Dakota del Norte, Estados Unidos.

El alumno de Ingeniería en Telecomunicaciones, fue designado titular de esta empresa espacial por su experiencia en otras simulaciones análogas.

Con el objetivo de desarrollar y probar tecnología pensada para las misiones reales al planeta rojo, como trajes espaciales y factores humanos que serán cruciales para la búsqueda y éxito de la conquista de Marte, del 2 al 16 de octubre se llevará a cabo este proyecto en la Universidad de Dakota del Norte, en instalaciones financiadas por la Administración Nacional de la Aeronáutica y del Espacio, a través de su Established Program to Stimulate Competitive Research, conocido como NASA EPSCoR.

“Como comandante, mi función es examinar y experimentar con desarrollos propios, de la Universidad de Dakota del Norte y de la NASA, así como con algunos proyectos propios de la tripulación. De Latinoamérica seremos cuatro tripulantes: Atila Meszaros (Perú), David Mateus (Colombia) y Marcos Bruno (Argentina). Todos tenemos experiencia en simulaciones análogas, pero ésta, a diferencia de otras, es completamente científica, con objetivos complejos, experimentos y horarios sumamente rigurosos”, explicó Bazaldua Morquecho.

Águila y cóndor espaciales

Será la primera ocasión que en la universidad estadounidense participará una tripulación completamente de latinoamericanos, destacó. Es un logró derivado del interés de Pablo Gabriel de León, ingeniero aeroespacial argentino que trabaja con la NASA, dedicado al desarrollo de trajes especiales para las siguientes misiones a la Luna y Marte, con los que se trabajará.

“Las principales agencias espaciales están interesadas en estos temas, y Latinoamérica ya ha empezado a involucrarse a fondo con fines académicos, estratégicos y hasta militares”, dijo.

Lo importante no es sólo el deseo de llegar a Marte como un logro de la humanidad, este esfuerzo conllevan ventajas estratégicas, aclaró el universitario. Por ejemplo, grandes naciones aplican recursos a las misiones espaciales porque les generan beneficios económicos, políticos, sociales y seguridad nacional, además de obtener información sobre la situación de sus fronteras y hasta de la biodiversidad de sus territorios.

“En la actualidad muchos avances se asientan en tecnología espacial, y vendrá la parte de la exploración, que será una realidad en las siguientes tres décadas. Nuestra Universidad y México ya participan, quizá con misiones académicas y algunos esfuerzos aislados, pero en pocos años serán palpables, y este tipo de colaboraciones contribuirán a tener mayor presencia como nación”, subrayó.

Conforme pase el tiempo, concluyó, la tecnología nos obligará a sacar del espacio recursos que son escasos en la Tierra, y entonces veremos esta labor como una necesidad.

Danton Bazaldua fue nombrado en 2016 uno de los cuatro líderes emergentes del sector espacial por el Space Generation Advisory Council, entidad de la Organización de las Naciones Unidas. Realizó una estancia en el Politécnico de San Petersburgo, Rusia, donde desarrolló misiones y protocolos de comunicación con nanosatélites. Intervino en la Poland Mars Analogue Simulation 2017 (PMAS 2017) y fue Oficial de Salud y Prevención en la misión MDRS LATAM II en 2018.

 

 

Publicado en Tecnologia

Se han encontrado planetas que orbitan otros sistemas solares, pero no es seguro que sean ‘gemelos’ de la Tierra, “de ahí la importancia de cuidarla más”, dijo la doctora honoris causa por la UNAM

La Tierra será un sitio para vivir por al menos 100 millones de años, se nos ha dado el regalo del tiempo cósmico; entonces, ¿lo vamos a usar o lo vamos a desperdiciar?, cuestionó

Ofreció la conferencia “Cosmic knowledge and long term strategy of the human race.

La astronomía es útil para inspirarnos a salvar la Tierra, para apreciar nuestro pasado cósmico y darnos cuenta de que hay mucho tiempo hacia adelante para que la humanidad haga cosas sorprendentes. Desde esa perspectiva, Sandra Moore Faber, doctora honoris causa por la UNAM, instó a los estudiantes de la Facultad de Ciencias (FC) a trabajar para preservar nuestro planeta, “el único que tenemos por ahora”.

Acompañada por el coordinador de la Investigación Científica, William Lee Alardín; la directora de la FC, Catalina Stern Forgach; y el director del Instituto de Astronomía, Jesús González, la catedrática de la Universidad de California, Santa Cruz, destacó que son los jóvenes quienes con sus ideas pueden ayudar en la preservación de un planeta que “podría ser único en el Universo”.

Durante la conferencia Cosmic knowledge and long term strategy of the human race, detalló que “la Tierra será un sitio para vivir al menos 100 millones de años, se nos ha dado el regalo del tiempo cósmico; entonces, ¿lo vamos a usar o lo vamos a desperdiciar? Cuando decimos que somos la primera generación de humanos que se enfrenta a este reto, es porque también somos los primeros que tienen este conocimiento, junto con la capacidad de perjudicar o salvar el futuro”.

Ante cientos de estudiantes y profesores de esta casa de estudios, reunidos en el auditorio Alberto Barajas Celis, Sandra Moore Faber, quien estudia el cosmos, sus nubes de gas y cómo ciertas zonas de un planeta pueden determinar si puede o no existir vida en él, destacó que si bien se han encontrado planetas que orbitan otros sistemas solares, en realidad no es seguro que sean ‘gemelos’ de la Tierra, “de ahí la importancia de cuidarla más”.

Productividad inalcanzable

La investigadora aseguró que no hay forma de incrementar la producción económica, todo debe ser reciclado. “Si tomamos en cuenta una perspectiva cósmica, ser sustentables es algo completamente diferente a lo que implica la economía”.

Cuando se habla de crecimiento económico se busca que éste sea constante, pues los líderes políticos sostienen que de lo contrario pereceremos, pero al poner el problema considerando los tiempos cósmicos, las cosas cambian drásticamente.

Creen que la Tierra puede crecer en un factor de productividad 16 veces mayor al actual, “lo dudo. Los economistas ven la productividad, pero no la capacidad del planeta para alcanzarla. Es claramente imposible”, remarcó.

Nosotros, como población, estamos llegando a un límite inconveniente, que lleva a nuevos temas morales que se refieren a la forma ética de enfrentar el futuro como especie.

“No tenemos una sensación de obligación con las generaciones futuras, no nos hemos puesto de acuerdo en si tenemos una responsabilidad de custodia con la Tierra, tampoco sabemos si existe un verdadero valor intrínseco en las actividades futuras de la humanidad y no creemos que se tenga un destino, nadie ha pensado a esta escala de tiempo”, reconoció.

William Lee Alardín coincidió en que la astronomía es una ciencia básica que ha tenido una larga historia en nuestro país, y sigue vigorosa y vigente en el conocimiento científico, además de buscar el desarrollo de aplicaciones y motivar a la sociedad para trabajar por el conocimiento, para que pueda estar más informada, más crítica, adaptable y resiliente ante los cambios que vienen, que en este siglo serán más acelerados.

Sobre la entrega del doctorado honoris causa a Moore Faber, Lee destacó que se trata de un premio que honra los más altos estándares y principios de la investigación. Para esta casa de estudios es un honor contar con la responsable de la instalación del Observatorio Keck, en Hawái, así como del equipo que diseñó una de las más importantes cámaras del telescopio espacial Hubble.

Sandra Moore Faber es mundialmente reconocida por ayudar a comprender cómo es que las galaxias se forman, funcionan, requieren de la materia oscura, agujeros negros, y ha tenido una gran influencia sobre la teoría del Big Bang, además de escribir 325 artículos y ser citada más de 60 mil veces.

 

 

 

Publicado en Tecnologia
Sábado, 28 Septiembre 2019 05:41

Altera las telecomunicaciones la actividad solar

 Una tormenta solar es capaz de afectar también las subestaciones que alimentan a prácticamente todo el territorio, destacó Américo González, del Instituto de geofísica

En este proyecto colaboran el Laboratorio Nacional de Clima Espacial del Instituto de Geofísica y la Comisión Federal de Electricidad

Los efectos de la actividad solar pueden impactar en las telecomunicaciones, los sistemas de posicionamiento global y, en casos extremos, en los sistemas que distribuyen y generan la energía eléctrica, afirmó Juan Américo González Esparza, investigador del Instituto de Geofísica (IGef) de la UNAM.

Por ser un asunto de seguridad nacional, el Laboratorio Nacional de Clima Espacial (LANCE) del IGef empezó a estudiar el nivel de vulnerabilidad e impacto de este fenómeno en la red eléctrica nacional, en colaboración con la Comisión Federal de Electricidad (CFE).

A raíz del avance tecnológico de la era espacial, explicó, se ha desarrollado una serie de tecnologías que hoy son fundamentales para la sociedad moderna; sin embargo, “hemos visto que son vulnerables a los efectos de las tormentas solares”.

A estos riesgos se encuentran expuestos todos los países, pues los efectos de las tormentas solares son globales, a diferencia de lo que ocurre con un sismo o con un huracán, donde las afectaciones están restringidas a una región del planeta, resaltó.

El especialista en física espacial explicó que cuando ocurre una tormenta solar hay una explosión en el Sol; en ocasiones salen nubes de material solar que se propagan en el espacio y algunas de éstas pasan por donde se encuentra nuestro planeta. Cuando se impactan contra el campo magnético terrestre se desencadena una serie de fenómenos físicos que terminan con una perturbación magnética sobre nuestro mundo, y es a lo que llamamos tormenta magnética”.

Entonces el campo magnético de la Tierra puede variar durante horas, incluso días. Cuando esto sucede hay cambios que pueden producir corrientes eléctricas que viajan a través de conductores de larga extensión como gasoductos o líneas de alta tensión de una red eléctrica nacional.

En México la red eléctrica de la CFE tiene 150 subestaciones de 400kV, que alimentan prácticamente la totalidad del país, y son las más vulnerables a los efectos de las tormentas magnéticas causadas por las explosiones en el Sol, remarcó.

Han ocurrido tormentas solares intensas que han producido perturbaciones magnéticas que ocasionan la pérdida total de este tipo de subestaciones, es el caso de Canadá, en 1989; Sudáfrica, en 2003; China; Nueva Zelanda y Finlandia, entre otros.

“Hasta ahora no habíamos estudiado en México el nivel de vulnerabilidad de la red eléctrica ante estos fenómenos. Es una labor compleja que requiere especialistas y la apertura de las compañías eléctricas para que permitan medir los efectos de las variaciones del campo magnético sobre la red. Estas investigaciones son difíciles de desarrollar en el mundo; aquí logramos establecer una colaboración con la CFE, apoyada por el Centro Nacional de Prevención de Desastres”.

Como parte de este trabajo, ya se colocó el primer detector en una subestación de la CFE, en Querétaro, para medir los efectos de las corrientes geomagneticamente inducidas, y se instalarán seis medidores más en diferentes subestaciones de las 150 que hay en el país, informó González Esparza.

“Estudiamos un tema de relevancia nacional; con el desarrollo de modelación numérica hemos identificado las subestaciones más vulnerables. Con esta información la CFE podrá tomar medidas para proteger la red eléctrica y atenuar los daños al sistema eléctrico nacional”, concluyó.

Publicado en Tecnologia

Es la primera mujer mexicana en doctorarse en astronomía por la Universidad de California, en Berkeley, es investigadora, docente y una importante divulgadora de la ciencia..

En la sala Julio Bracho de la Filmoteca en el Centro Cultural Universitario (CCU) de la Universidad Nacional Autónoma de México (UNAM) se realizó un homenaje a la científica Silvia Torres Castilleja con la proyección de un cortometraje y una mesa de diálogo en la que participaron Julieta Fierro, investigadora del Instituto de Astronomía (IA) de la UNAM; Roxana Eisenmann, directora general de la IV Muestra Nacional de Imágenes Científicas (MUNIC), Ximena Perujo, de la Filmoteca; y Alejandro Alonso, director asociado de la MUNIC.

La investigadora emérita del Instituto de Astronomía y del Sistema Nacional de Investigadores fue la primera mexicana en doctorarse en astronomía por la Universidad de California, en Berkeley, y ha sido una destacada estudiosa de la materia que existe entre las estrellas y las atmósferas estelares, así como del interior de las estrellas.

Torres Castilleja dijo sentirse muy contenta con este homenaje y en su discurso habló de la importancia de la imagen científica, recurso que ha sido utilizado desde la antigüedad, por ejemplo, con figuras que representaban a las estrellas y que fueron diseñadas por muy diversas culturas, en particular la cultura griega.

Galileo Galilei también recurrió a ilustraciones para describir sus observaciones astronómicas, así como Nicolás Copérnico. “La imagen estática ha sido muy importante en astronomía y ni hablar de cuando llegó la fotografía, lo que nos permitió registrar eventos, cambios y peculiaridades”, comentó la también integrante de la Academia Mexicana de Ciencias.

También recordó que, durante el viaje de Napoleón a Egipto, se llevó a 167 científicos para tomar notas y registros de lo que había. Y en México también ha sido muy importante la imagen científica; una de las expediciones reales a la Nueva España dirigida por Martín Sessé y Lacasta, que tuvo como propósito registrar la flora y fauna, fue ilustrada por José Mariano Mociño, Juan de Dios Vicente de la Cerda y Atanasio Echeverría y Godoy en 1787. “Ahora esta colección es de la UNAM, es un registro bellísimo”, indicó la catedrática.

En su oportunidad, la también astrónoma Julieta Fierro refirió que Torres Castilleja “decidió reinventar su astronomía al estudiar nebulosas planetarias mediante luz ultravioleta cuando tradicionalmente se estudiaba a los astros por luz visible. Silvia se lanzó a observar nebulosas planetarias mediante este espectro y descubrir en qué consistía ese mundo diferente”.

En 1979 Silvia Torres Castilleja obtuvo tiempo en el Observatorio Espacial Explorador Ultravioleta Internacional (UIE, por sus siglas en inglés) para estudiar las propiedades de las nebulosas planetarias, el espacio interestelar y núcleos de galaxias, entre otros fenómenos astronómicos.

Relató que, Silvia Torres, quien fuera su profesora en la universidad, es una extraordinaria mujer; cuando era su estudiante le inspiraba miedo y admiración “pues por un lado era muy seria y muy estricta en clases, y por otro, era una mujer que podía combinar la docencia e investigación con su vida personal”.

La trayectoria de la doctora Torres Castilleja no sólo destaca en el ámbito académico, ha sido una convencida de la divulgación de la ciencia, siendo el proyecto de renovación en 2003 de la sala “Universo” del Museo de las Ciencias Universum una de sus principales aportaciones.

De acuerdo con Roxana Eisenmann “para MUNIC es un gusto honrar a una mujer quien es figura pionera en el quehacer de la divulgación científica en México, y que ha tenido una destacada aportación en medios radiofónicos, impresos y televisivos”.

Ximena Perujo de la Filmoteca UNAM recordó que entre las distinciones que ha recibido la astrónoma destacan el Premio Nacional de Ciencias y Artes, la medalla de la Academia de Ciencias para el Mundo en Desarrollo (TWAS) y el Premio L’Oréal Unesco, así como el doctorado honoris causa por la UNAM y por la Universidad Ben Gurion del Néguev en Israel.

Alejandro Alonso, por su parte, agradeció a la astrónoma mexicana, quien fue presidenta de la Unión Astronómica Internacional (2015-2018), por haberle permitido a la producción adentrarse en su mundo “y jugar a reconocer el juego de otros, pues con el conocimiento se pueden construir diálogos”.

Además, informó que este año se recibieron 118 materiales y se seleccionaron 58 piezas, entre cortometrajes, magazines, documentales, cápsulas, largometrajes de ficción y piezas audiovisuales para museos, planetarios o domos de inmersión, de los cuales 35% fueron producidos por mujeres. En la misma ceremonia se entregaron los reconocimientos a los productores de estos materiales.

 

 

Publicado en Tecnologia

Contribuyó en la obtención de la primera imagen de un agujero negro.

El Breakthrough Prize reconoce trabajos científicos de primer nivel mundial.

Laurent Loinard, investigador del Instituto de Radioastronomía y Astrofísica (IRyA) de la UNAM, obtuvo el Breakthrough Prize 2020, en el área de Física, por su participación en un consorcio internacional que tomó la primera imagen de un agujero negro.

El universitario recibirá el galardón junto con los 347 miembros que forman el consorcio del Telescopio de Horizonte de Eventos, que captó la imagen del agujero negro en la galaxia M87, en 2017, misma que fue presentada el pasado mes de abril.

Loinard destacó que continúan analizando los datos que permitieron formar la imagen, así como nuevas observaciones hechas en 2018, por lo que el consorcio tiene la intención de presentar una nueva imagen para 2020, aunque no se sabe si será nuevamente del M87 o del agujero en el centro de la Vía Láctea.

Considerados los “Óscar de la ciencia”, los premios serán entregados el 3 de noviembre en ceremonia organizada por la Fundación Breakthrough Prize, encabezada por Sergey Brin, Priscilla Chan, Mark Zuckerberg, Ma Huateng, Yuri y Julia Milner.

“Se trata del segundo reconocimiento que se otorga al consorcio; el primero fue el Diamond Achievement Award, de la National Science Foundation, EU, y es comparado con los Óscar o el Nobel para la Ciencia”, y a nivel económico, es el más importante de todos, dijo Laurent Loinard desde Morelia, Michoacán.

El investigador de la UNAM y tres de sus estudiantes de posgrado contribuyeron a esta proeza. Actualmente, sus alumnos realizan estancias posdoctorales en Alemania y también recibirán el premio, pues la Fundación decidió repartirlo equitativamente entre todos los participantes.

“En este momento, soy el único de la UNAM, porque mis estudiantes Sergio A. Dzib, Antonio Hernández-Gómez y Gisela N. Ortiz-León hacen una estancia, pero me escribieron y están muy contentos, no pueden creer que también recibirán el premio. También está el equipo de trabajo del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)”, añadió el universitario.

Cada año, el Breakthrough Prize reconoce trabajos científicos de primer nivel referentes a un tema en particular, y en esta ocasión fue “ver lo invisible”, inspirado en el Telescopio de Horizonte de Eventos, que creó la primera imagen de un agujero negro, así como la demostración del poder de la ciencia y las matemáticas para revelar mundos ocultos e inexplorados.

La imagen fue elaborada gracias a las observaciones sincronizadas de los radiotelescopios ALMA y APex, en Chile; del IRAM de 30 metros, en España; del James Clerk Maxwell y del Arreglo Submilimétrico, ambos en Hawái; del Telescopio Submilimétrico, de Estados Unidos; del Telescopio del Polo Sur, en el Polo Sur; y del Gran Telescopio Milimétrico Alfonso Serrano, donde además de Loinard y sus estudiantes, participaron especialistas del INAOE.

“El tamaño de estos agujeros es proporcional a su masa y la distancia a la que se encuentran. El de nuestra galaxia es dos mil veces menos masivo que el de M87, pero es dos mil veces más cercano, entonces tienen el mismo tamaño en el cielo. La desventaja que tiene el de nuestra galaxia es que su flujo es muy variable, su brillo cambia todo el tiempo y eso complica hacer las imágenes”, subrayó.

Breakthrough anunció también que en la categoría de Ciencias de la Vida será reconocido el trabajo de Jeffrey Friedman, de la Universidad Rockefeller; Franz Ulrich Jartl, del Instituto Max Planck; Arthur Horwich, de la Universidad de Yale; y Virginia Man-Yee Lee, de la Universidad de Pensilvania, por su trabajo relacionado con obesidad, envejecimiento celular, dolor y demencia.

Además, en Matemáticas se reconocerá a Alex Eskin, de la Universidad de Chicago, y se otorgará un premio especial de Física Fundamental a Sergio Ferrara, de la Organización Europea para la Investigación Nuclear (CERN), por la invención de la supergravedad.

 

 

Publicado en Tecnologia

Se instalará en Los Andes, a una altitud mayor a cuatro mil 600 metros sobre el nivel del mar; permitirá observar regiones como el centro de nuestra galaxia.

La UNAM participará en el desarrollo de un observatorio de rayos gamma, que permitirá examinar el centro de nuestra galaxia, donde se encuentra un hoyo negro de cuatro millones de masas solares.

Por medio de una colaboración internacional que conjunta a 36 instituciones de nueve países, entre ellos varios grupos de investigación mexicanos y de la Universidad Nacional, se construirá en Los Andes, a una altitud de cuatro mil 600 metros sobre el nivel del mar.

La contribución de México en el proyecto SWGO (Southern Wide field-of-view Gamma ray Observatory) es mediante un consorcio de entidades representadas por el Instituto de Física (IF) de la UNAM, explicó Andrés Sandoval, investigador de la entidad universitaria.

El también portavoz de la colaboración HAWC y representante del consorcio de instituciones mexicanas que intervienen en SWGO comentó que “esta colaboración se encargará de desarrollar los prototipos de los detectores que serán indispensables para el nuevo observatorio; asimismo, optimizará el diseño del arreglo y permitirá escoger el mejor lugar para construirlo”.

El campo de visión del nuevo observatorio será amplio y cubrirá el hemisferio sur. Complementará al observatorio HAWC de rayos gamma (fenómenos explosivos muy energéticos y de corta duración que ocurren en el universo), situado en el volcán Sierra Negra, en Puebla, que capta señales desde el hemisferio norte del planeta.

Proyecto SWGO

Los países fundadores del SWGO son Alemania, Argentina, Brasil, Italia, México, Portugal, Reino Unido, República Checa y Estados Unidos. El proyecto unifica a una comunidad internacional dedicada a este campo.

Andrés Sandoval expuso que después de esta primera etapa de planeación y desarrollo, que durará un máximo de tres años, se planea instalar el nuevo observatorio a una altitud mayor a los cuatro mil 600 metros sobre el nivel del mar.

Su posición en el hemisferio sur hará factible ver directamente una de las regiones más interesantes de nuestra galaxia. “Hacer observaciones con un instrumento de amplio campo de visión es ideal para estudiar fuentes variables en el tiempo y para buscar regiones extendidas de emisión como las llamadas Burbujas de Fermi alrededor del centro galáctico, o señales de la aniquilación de la materia oscura, así como fenómenos inesperados”, detalló.

 

Observatorio HAWC de rayos gamma, situado en el volcán Sierra Negra, en Puebla, que capta señales desde el hemisferio norte del planeta

El instrumento posibilitará investigar algunas de las interrogantes más apremiantes sobre el universo. Observará rayos gamma, que son fotones o partículas de luz billones de veces más energéticos que la luz visible.

Éstos permiten explorar la frontera de la física buscando partículas de materia oscura y posibles desviaciones de la teoría general de la relatividad de Albert Einstein.

Para Andrés Sandoval y el grupo de científicos de México, con un observatorio de la siguiente generación y con mayor sensibilidad en la Cordillera de los Andes se podrá mirar continuamente toda la bóveda celeste en rayos gamma de la más alta energía.

El nuevo observatorio detectará las partículas a nivel del suelo, como lo hace HAWC; para hacerlo 10 veces más sensitivo, la colaboración desarrollará un nuevo concepto de detectores y diseñará una electrónica de procesamiento de señales más sofisticada.

La meta es que sea el más poderoso, que se encuentre en el mejor lugar y al menor costo.

PARTICIPANTES

Al consorcio de instituciones representadas por el Instituto de Física pertenecen, por parte de esta casa de estudios, además del propio IF, los institutos de Astronomía, Ciencias Nucleares y Geofísica.

También, el Centro de Investigación en Computación del Instituto Politécnico Nacional; la Facultad de Ciencias de la Benemérita Universidad Autónoma de Puebla; el Instituto Nacional de Astrofísica, Óptica y Electrónica del Consejo Nacional de Ciencia y Tecnología, y la Universidad Autónoma del Estado de Hidalgo.

Además, el Departamento de Física y de Ciencias Naturales y Exactas de la Universidad de Guadalajara; el Instituto de Física y Matemáticas de la Universidad Michoacana de San Nicolás de Hidalgo; la Facultad de Ciencias en Física y Matemáticas de la Universidad Autónoma de Chiapas, así como la Universidad Politécnica de Pachuca.

 

 

 

Publicado en Tecnologia
Página 1 de 27
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.