J. Arnoldo Bautista

J. Arnoldo Bautista

Consultando a nuestra omnipresente Wiki encontramos que  “Los neandertales u hombre de Neandertal es una especie extinta del género Homo que habitó en Europa, Próximo Oriente, Oriente Medio y Asia Central, entre 400,000 y 40,000 años antes del presente, aproximadamente; durante el final del Pleistoceno medio y casi todo el superior. Cuando tuvo lugar su descubrimiento, se le nombró Homo neanderthalensis, y fue clasificado como una especie distinta del Homo sapiens. No obstante, algunos autores lo consideran como una subespecie de Homo sapiens​, y se suelen referir a dicha subespecie como Homo sapiens neanderthalensis.”​

“Los estudios paleogenéticos indican un origen común para los humanos modernos y los neandertales, así como hibridaciones entre ambas especies de hominino en, al menos, dos lugares y momentos diferentes: Próximo Oriente y Europa occidental. Anatómicamente, los neandertales eran más robustos que el humano moderno, con un tórax y cadera anchos y extremidades cortas. El cráneo se caracteriza por su doble arco superciliar, frente huidiza, la ausencia de mentón y una capacidad craneal media más grande que la de Homo sapiens sapiens. Los estudios anatómicos y genéticos señalan la posibilidad de que tuvieran un lenguaje articulado.”

 

“El tipo de herramientas líticas que se han encontrado, y a las que se les asocia, se adscriben a la denominada cultura Musteriense, característica del Paleolítico medio. En los últimos años de existencia de los neandertales, aparecen en el registro arqueológico herramientas diferentes que se incluyen en la cultura Châtelperroniense, que algunos autores atribuyen al Homo sapiens​. Los neandertales eran omnívoros y explotaban una amplia variedad de alimentos pesqueros, mariscos, vegetales, etc.”

 

“Se desconocen las causas exactas de su extinción. Las hipótesis consideradas guardan relación con la expansión del Homo sapiens en Eurasia, así como por los cambios climáticos. Además, hay una teoría sobre una erupción volcánica, concretamente de los Campos Flégreos, pues investigaciones datan sobre una erupción hace 39 000 años aproximadamente.”

 

Sobre este tema nos envía un querido colega el presente artículo publicado, entre otros, en el  boletín digital de EurekaAlert! el 28 de agosto de 2020 y emitido por la Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Veamos de que se trata…

 

 

El cambio climático que se produjo poco antes de su desaparición provocó un cambio complejo en el comportamiento de los neandertales tardíos en Europa: desarrollaron herramientas más complejas. Esta es la conclusión a la que llegó un grupo de investigadores de Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) y Università degli Studi die Ferrara (UNIFE) a partir de los hallazgos en la cueva Sesselfelsgrotte en la Baja Baviera.

 

Como se comentó al inicio, los neandertales vivieron hace aproximadamente 400,000 a 40,000 años en grandes áreas de Europa y Oriente Medio, incluso hasta los bordes exteriores de Siberia. Produjeron herramientas utilizando madera y material de roca similar al vidrio, que a veces también combinaban, por ejemplo, para hacer una lanza con una punta afilada y dura de piedra.

 

 

Desde hace aproximadamente 100,000 años, su herramienta universal de corte y raspado era un cuchillo de piedra, cuyo mango consistía en un borde desafilado en la propia herramienta. Estos Keilmesser (cuchillos con respaldo, asimétricos y de forma bifacial) estaban disponibles en varias formas, lo que llevó a los investigadores a preguntarse por qué los neandertales crearon tal variedad de cuchillos. ¿Usaron diferentes cuchillos para diferentes tareas o los cuchillos provienen de diferentes subgrupos de neandertales? Esto era lo que esperaba descubrir el proyecto de investigación internacional.

Keilmesser son la respuesta

 

"Los Keilmesser son una reacción al estilo de vida altamente móvil durante la primera mitad de la última edad de hielo. Como se podían afilar de nuevo cuando fuera necesario, se pudieron usar durante mucho tiempo, casi como una navaja suiza en la actualidad, "dice el Prof. Dr. Thorsten Uthmeier del Institute of Prehistory and Early History de FAU. "Sin embargo, la gente a menudo olvida que los cuchillos trabajados bifacialmente no eran las únicas herramientas que tenían los neandertales. Los cuchillos con respaldo del período neandertal son sorprendentemente variados", agrega su colega italiano, el Dr. Davide Delpiano, de la Sezione di Scienze Preistoriche e Antropologiche en UNIFE. "Nuestra investigación utiliza las posibilidades que ofrece el análisis digital de modelos 3-D para descubrir similitudes y diferencias entre los distintos tipos de cuchillos utilizando métodos estadísticos".

 

Los dos científicos investigaron artefactos de uno de los sitios neandertales más importantes de Europa Central, la cueva Sesselfelsgrotte en la Baja Baviera. Durante las excavaciones en la cueva realizadas por el Institute of Prehistory and Early History en FAU, se han encontrado más de 100,000 artefactos e innumerables restos de caza dejados por los neandertales, incluso incluyendo evidencia de un entierro neandertal. Los investigadores ahora han analizado las herramientas más importantes en forma de cuchillo utilizando escaneos 3-D producidos en colaboración con el Prof. Dr. Marc Stamminger y el Dr. Frank Bauer de la Cátedra de Computación Visual en el Departamento de Ciencias de la Computación de FAU. Permiten registrar la forma y las propiedades de la herramienta con extrema precisión.

 

"El repertorio técnico utilizado para crear Keilmesser no solo es una prueba directa de las habilidades de planificación avanzada de nuestros parientes extintos, sino también una reacción estratégica a las restricciones impuestas por las condiciones naturales adversas", dice Uthmeier, profesor de Prehistoria Temprana y Arqueología de la FAU. de cazadores y recolectores prehistóricos.

 

Otro clima, otras herramientas

Lo que Uthmeier llama "condiciones naturales adversas" son los cambios climáticos después del final del último interglacial hace más de 100,000 años. Las fases frías particularmente severas durante el siguiente período glacial de Weichsel comenzaron hace más de 60,000 años y llevaron a una escasez de recursos naturales. Para sobrevivir, los neandertales tuvieron que volverse más móviles que antes y ajustar sus herramientas en consecuencia.

 

Los neandertales probablemente copiaron la funcionalidad de los cuchillos con respaldo unifacial, que solo tienen forma en un lado, y los usaron como punto de partida para desarrollar Keilmesser con forma bifacial en ambos lados. Esto se indica en particular por las similitudes en el filo, que consiste en ambos casos en un fondo plano y una parte superior convexa, que era predominantemente adecuada para cortar a lo largo, lo que significa que es correcto referirse a la herramienta como un cuchillo, "dice Davide Delpiano de UNIFE.

 

Ambos tipos de cuchillo, la versión anterior más simple y la versión más nueva, significativamente más compleja, obviamente tienen la misma función. La diferencia más importante entre las dos herramientas investigadas en este caso es la vida útil más larga de las herramientas bi-faciales. Por lo tanto, Keilmesser representa un concepto de alta tecnología para una herramienta multifuncional de larga duración, que podría usarse sin ningún accesorio adicional, como un mango de madera.

 

"Los estudios de otros grupos de investigación parecen apoyar nuestra interpretación", dice Uthmeier. "A diferencia de lo que han afirmado algunas personas, la desaparición de los neandertales no puede haber sido el resultado de una falta de innovación o de pensamiento metódico".

 

Fuentes:

https://es.wikipedia.org/wiki/Homo_neanderthalensis

https://www.eurekalert.org/pub_releases/2020-08/uoe-hna082820.php

 

Cerramos nuestra pequeña serie de “Impresión de casas 3D: todo una realidad” con un tercer artículo que nuestro estimado colega, ingeniero civil, nos envía y el cual se titula: “Las casas impresas en 3D del futuro son huevos gigantes en Marte” escrito por Vanessa Bates Ramírez y publicado en el boletín digital de Singularity Hub el 9 de julio de 2020 y traducido por un servidor. Veamos de qué se trata….

 

Tal y como revisamos en el primer artículo, el año pasado se inició el trabajo en una comunidad de casas impresas en 3D para familias de bajos ingresos en México y en Texas. En el segundo artículo leímos que el mes pasado se presentó en Bélgica una casa impresa en 3D de dos pisos de una sola pieza. Si bien la construcción de casas con impresoras 3D es cada vez más escalable, también es una forma divertida de jugar con diseños únicos y conceptos futuristas para nuestros espacios habitables.

No hay nada más futurista que vivir en Marte, ¿y adivinen qué? También hay una casa impresa en 3D para eso. De hecho, hay algunos; el año pasado vio la conclusión un concurso organizado por la NASA llamado “3D Printed Habitat Challenge”.

 

La competencia de larga duración, que comenzó en 2015, asignó a los participantes la tarea de crear casas que fueran viables para construir en Marte. Los equipos tuvieron que considerar no solo la tecnología que usarían, sino también qué tipo de material estará disponible en el Planeta Rojo y qué tipo de características necesitará tener un hogar marciano para que un humano sobreviva (e idealmente, para sobrevivir cómodamente); las estructuras deben ser lo suficientemente fuertes como para sobrevivir a la colisión de un meteorito, por ejemplo, y capaces de mantener una atmósfera muy diferente a la que se encuentra justo afuera de sus paredes.

 

El premio mayor (500,000 dólares) fue para AI Space Factory, una empresa de tecnologías de arquitectura y construcción con sede en Nueva York centrada en la construcción para la exploración espacial. Su diseño de doble capa y cuatro niveles se llama Marsha y, a diferencia de los hábitats marcianos que hemos visto en la pantalla grande o sobre los que hemos leído en las novelas de ciencia ficción, no es ni una cúpula ni un búnker subterráneo. De hecho, se asienta completamente sobre el suelo y parece un cruce entre una colmena y un huevo gigante.

El equipo eligió la forma de huevo de colmena muy deliberadamente, diciendo que no solo está optimizada para manejar las demandas de presión y temperatura de la atmósfera marciana, sino que construirla con una impresora 3D será más fácil porque la impresora no tendrá que desplazarse mucho como lo haría para construir una estructura con unos cimientos más grandes. Eso significa menos riesgo de errores y una mayor velocidad de construcción.

"Es importante ser estructuralmente eficiente como forma, porque eso significa que puede usar menos material", dijo David Malott, fundador y CEO de AI Space Factory. “Si piensas en una cáscara de huevo en la Tierra, [es] una forma muy eficiente. La cáscara del huevo puede ser muy, muy delgada y aún así tiene la cantidad adecuada de fuerza ".

El diseño de la casa es como una casa adosada de varios niveles, excepto con algunos ajustes específicos de Marte; el primer piso es tanto un área de preparación, donde los ocupantes pueden vestirse antes de salir al exterior, como un "laboratorio húmedo" para la investigación. Hay un puerto de acoplamiento para rover justo afuera del área de preparación, adjunto a la casa.

 

En el segundo piso está lo que consideraría la habitación más importante, la cocina, y el tercer piso tiene un jardín, un baño y módulos para dormir que ocupan el lugar de los dormitorios (lo siento, no hay espacio para tu tocador antiguo o escritorio Ikea aquí ).

El piso superior es un área de recreación donde puede recrearse viendo la televisión o haciendo ejercicio, o quizás ambos simultáneamente.

 

Se necesitaron 30 horas para construir un modelo a escala de un tercio de la casa, pero esto no significa que sería necesario 90 horas para construirlo; La impresión durante el concurso se realizó en incrementos de 10 horas, y dado que el modelo contiene los mismos aspectos estructurales de la casa de tamaño completo, la impresora 3D solo necesitaría expandir su área de superficie alcanzable y altura para imprimir la cosa real.

Si todo sale según lo planeado (que, en realidad, todavía no hay planes; solo ideas), habrá mucho material disponible para construir lo real en el lugar real (Marte, claro). “AI Space Factory” colaboró con una empresa de diseño de materiales llamada Techmer PM para crear una mezcla súper fuerte de fibra de basalto, que vendría de rocas en Marte, y un bioplástico renovable que podría fabricarse a partir de plantas cultivadas en Marte. En las pruebas de la NASA, se demostró que el material es más fuerte y más duradero que el hormigón y más resistente a heladas y deshielos repetidos.

 

La compañía estaba preparada para abrir una versión terrestre de Marsha, llamada Tera, en el norte del estado de Nueva York en marzo pasado, y la gente aprovechó la oportunidad de pagar $175 - $500 para dormir en la estructura por una noche; pero los planes fueron descarrilados por la pandemia de coronavirus, y la compañía aún no ha anunciado una reapertura de la cabina Earthbound.

 

https://singularityhub.com/2020/07/09/the-3d-printed-homes-of-the-future-are-giant-eggs-on-mars/

 

 

En años pasados, en esta columna, se ha revisado el tema de la impresión 3D. Cuando lo hicimos comentamos que la impresión 3D es un grupo de tecnologías de fabricación por adición donde un objeto tridimensional es creado mediante la superposición de capas sucesivas de material. Cuando abordamos el tema por primera vez, los productos eran todavía muy rudimentarios. Varios años después, vemos que la tecnología se ha desarrollado excepcionalmente, bajando sus costos de producción y su aplicación se ha extendido en forma extraordinaria en campos como joyería, calzado, diseño industrial, arquitectura, ingeniería y construcción, automoción y sector aeroespacial, industrias médicas, educación, sistemas de información geográfica, ingeniería civil y muchos otros. Algunos ejemplos de estos desarrollos los hemos revisado en esta columna.

Precisamente, en lo relativo al tema de la impresión 3D, un querido colega, ingeniero civil, nos ha compartido tres artículos que versan sobre la impresión 3D de casas habitación, las cuales, actualmente ya son una realidad, con un mercado de la construcción en auge. Tuvimos dificultad en decidir cual artículo presentar de los tres que envió nuestro buen amigo, pues todos eran muy interesantes. Finalmente decidimos presentar los tres en este y los siguientes dos envíos.  

Advertirán en los ejemplos que revisaremos que la tecnología de las impresoras 3D de casas son realmente diversas y van desde máquinas polares, impresoras montadas con estructuras especiales hasta robots móviles. Esto equipos son capaces de extruir hormigón o plástico, que permiten construir diferentes estructuras de diversa complejidad.

Iniciaremos nuestra jornada con el artículo denominado “Un día, podrías vivir en una casa impresa en 3D” el cual fue publicado en el boletín digital de World Changing Ideas el 28 de abril de 2020,  escrito por Adele Peters y traducido por un servidor. Veamos de qué se trata...  

 

“A finales del presente año, en una parte remota del sur de México, 50 familias se mudarán a la primera comunidad impresa en 3D del mundo. Y en las afueras de Austin, Texas, seis personas que anteriormente eran personas sin hogar se mudarán a pequeñas casas impresas en 3D este mayo. Los dos proyectos son ya ejemplos concretos a gran escala que prueban que la tecnología de impresión 3D podría ser una forma viable de construir rápidamente viviendas asequibles.

 

"Si queremos tener realmente control sobre la crisis mundial de la vivienda, no a lo largo de cientos de años, sino en decenas de años, necesitamos una solución altamente escalable, que no será otra que la impresión 3D", nos explica Jason Ballard, cofundador y director ejecutivo de Icon, la empresa que creó la enorme impresora 3D que construyó las nuevas casas. La empresa es la ganadora de la categoría de excelencia general en los premios World Changing Ideas Awards 2020 de Fast Company. Su impresionante impresora puede imprimir las paredes de una casa en 24 horas.

 

La impresora de esta empresa de reciente creación mide 33 pies de largo, funciona como una versión gigante de las impresoras 3D de escritorio, arrojando una mezcla de concreto personalizada en capas como el glaseado de un pastel.

El proceso construye las paredes de la casa, con otras partes, incluido el techo y las ventanas, agregadas más adelante. “El sistema de construcción de muros suele ser la parte más laboriosa, costosa, plagada de errores y en donde más se desperdicia en todo el proceso de construcción”, agrega Ballard. “Nuestro sistema combina la instalación de varios componentes, incluido el aislamiento, en un sólo proceso, y los ingenieros de la empresa ahora están experimentando con la incorporación de cableado eléctrico y de plomería en la impresión 3D.”

 

Nuestro proceso acelera la construcción de una casa; las paredes se pueden imprimir en 24 horas, lo que significa que el tiempo total de construcción de toda la casa se puede reducir a la mitad. En áreas donde hay escasez de trabajadores de la construcción, puede ayudar a resolver el problema de la falta de mano de obra.

La reducción de mano de obra, combinada con el uso de materiales baratos y que se pueden obtener fácilmente en la región, también hace que su construcción sea menos costosa. Los materiales son más resistentes que la construcción estándar en el área y pueden resistir mejor desastres como huracanes. “Casi todos los demás enfoques para la construcción utilizan material intrínsecamente no resilientes que después se debe atemperar con tratamientos o revestimientos o con un costo adicional”, dice. "Pero nosotros estamos iniciando con un material resilente". (El material, llamado Lavacrete, es una mezcla desarrollada en Icon que puede fluir fácilmente pero también puede fraguar con extrema rapidez una vez que la máquina lo bombea).

La compañía se asoció con “New Story”, una organización sin fines de lucro enfocada en encontrar mejores formas de construir viviendas que accesibles a una población de bajos recursos, a medida que se desarrolla la tecnología. En México, el equipo está construyendo viviendas para algunos de los residentes más pobres en un área rural cerca de la ciudad de Nacajuca. Las casas serán donadas a familias que actualmente viven en chozas improvisadas que se inundan cada vez que llueve mucho y que probablemente colapsarían en un terremoto. Si bien las chozas consistían de una sola habitación, con una serie de reparaciones en agujeros en las paredes y los techos, las casas nuevas tienen dos dormitorios, una cocina y una sala de estar. Para la mayoría de las familias, será la primera vez que tengan acceso a plomería y electricidad en interiores.

Las primeras casas en México se completaron en diciembre de 2019; en Texas, las primeras casas más pequeñas se terminaron en marzo de 2020. La empresa continúa desarrollando la tecnología. En el sitio cerca de Austin, intentó imprimir varias casas a la vez. “Diseñamos un experimento: ¿Qué pasa si alineamos la impresora e imprimimos tres casas a la vez? ¿Eso nos ayudaría a ir aún más rápido y reducir aún más los costos? La respuesta resulta ser sí, absolutamente. Esa es otra forma sutil en la que podemos atacar los costos, siendo más eficientes con el uso de nuestros materiales".

La empresa aún no ha compartido los costos de fabricación ya que la tecnología aún se encuentra en una etapa inicial. Pero el objetivo, dice Ballard, es tener un sistema que haga posible que cualquiera pueda descargar un diseño e imprimir una casa en la mitad del tiempo de construcción normal, a la mitad del costo.”

 

Fuente:

https://www.fastcompany.com/90483273/one-day-you-might-live-in-a-3d-printed-house

 

Para optimizar el uso del espacio en plantas industriales.

Se deben tener en cuenta muchos factores al diseñar un hospital, una fábrica, un centro comercial o cualquier planta industrial, y pueden surgir muchas preguntas antes de decidir sobre los planos de planta. ¿Cuál es la mejor ubicación para cada espacio diferente? ¿Qué distribución es la más adecuada para mejorar la eficiencia en estas grandes áreas?

Un estimado colega nos comporte un interesante artículo, escrito por Jeffrey B. Gurrola y publicado el 31 de julio de 2020, en el que se informa que los investigadores de la Universidad de Córdoba (UCO) en España, Laura García y Lorenzo Salas, están tratando de dar una respuesta a estas preguntas, y para hacerlo, han recurrido al mundo marino para simular el comportamiento de los arrecifes de coral. Veamos de quÉ se trata…

Dentro de estas pintorescas estructuras submarinas que albergan una amplia gama de especies de biodiversidad, hay una batalla constante por el espacio, donde los huecos disponibles están totalmente optimizados en busca de la supervivencia. Es precisamente este modelo de distribución natural el que ha abierto el camino para el equipo de investigación mencionado, que en los últimos años ha estado trabajando para responder la siguiente pregunta: ¿Cuál es la mejor solución al diseñar una distribución de una planta industrial?

El primero en incorporar el comportamiento de estos arrecifes de coral en un algoritmo

informático fue el investigador Sancho Salcedo, de la Universidad de Alcalá de Henares, en 2013. Desde entonces, y a partir de una asociación, el equipo estableció una línea de investigación inspirada en seres vivos, tomando en cuenta su reproducción y desarrollo para aprovechar al máximo el espacio. Recientemente, el grupo publicó un nuevo artículo que mejora dicho algoritmo de inspiración biológica. "En lugar de simular un arrecife de coral plano, como habíamos hecho anteriormente, pudimos replicar la estructura en tres dimensiones, lo que permitió encontrar muchas más soluciones y ofrecer mejores resultados", explica Laura García, autora principal de la investigación.

 

En el mundo real, el algoritmo puede ofrecer diseños novedosos que no se habían evaluado antes y nuevos planos de planta sobre cómo podría verse una planta industrial cuando el espacio se optimiza al máximo, lo que resulta en ahorro de dinero y mejora la eficiencia de estos edificios. Para hacerlo, después de validar la nueva herramienta en diferentes áreas industriales, como un rastro, plantas de reciclaje de papel y plástico y edificios de hasta 60 departamentos, el algoritmo es capaz de tener en cuenta diferentes variables como la distribución, la cantidad de material, el costo de mover dicho material de un lugar a otro, ruidos a evitar y parámetros necesarios de proximidad y lejanía.

Un algoritmo que incluye preferencias subjetivas.

A este respecto, en los últimos meses, el equipo ha publicado otro trabajo que profundiza en la misma línea de investigación en revistas científicas de gran prestigio. Recientemente, el grupo pudo incorporar una herramienta interactiva en el algoritmo que incluye preferencias subjetivas en el diseño. "Mediante un dispositivo que analiza la forma en que la persona encargada de diseñar el proyecto observa los planos de planta y el grado en que su pupila está dilatada, su opinión puede transmitirse a los planos de planta que se proponen", subraya Laura García.

La investigación realizada en los últimos meses, en la que también participaron otros profesores

de la UCO como José Antonio García, Carlos Carmona y Adoración Antolí, permitió establecer asociaciones con universidades de Portugal, Arabia Saudita y Estados Unidos, con contribuciones de José Valente de Oliveira (en la Universidad del Algarve), Sancho Salcedo Sanz (en la Universidad de Alcalá de Henares) y Ajith Abraham (en Machine Intelligence Research Labs).

 

Fuente:

 https://www.ethicaleditor.com/tech/the-behavior-of-coral-reefs-is-simulated-in-order-to-optimize-space-in-industrial-plants/

 

 

El antiguo filósofo Platón propuso la forma de los bloques elementales de construcción del universo. Según él, la Tierra estaba formada por cubos.

Un estimado colega nos comparte aquí un interesante artículo donde se informa que algunos investigadores modernos encuentran ahora una verdad fundamental en esa premisa. Al estudiar las formas y los patrones de fragmentación de una gran variedad de rocas, descubrieron que el promedio de todas sus formas es un cubo. El artículo, escrito por Katherine Unger Baillie, se publicó en el boletín digital de ingeniería de la University of Pennsylvania (UP) el pasado 20 de julio de 2020. Veamos de qué se trata… 

Platón, el filósofo griego que vivió en el siglo V A.C., creía que el universo estaba hecho de cinco tipos de materia: tierra, aire, fuego, agua y cosmos. Cada uno fue descrito con una geometría particular, lo que se conoce como forma platónica. Para la tierra, esa forma era el cubo.

La ciencia se ha movido constantemente más allá de las conjeturas de Platón, mirando al átomo como el bloque de construcción del universo. Sin embargo, el pensamiento de Platón, en este sentido, permanece con algo más de verdad, según los investigadores.

En un artículo reciente en los Proceedings of the National Academy of Sciences, un equipo de la University of Pennsylvania (UP), la Budapest University of Technology and Economics, y la  University of Debrecen utiliza matemáticas, geología y física para demostrar que la forma promedio de las rocas en la Tierra es un cubo

 

"Platón es ampliamente reconocido como la primera persona en desarrollar el concepto de un átomo, la idea de que la materia está compuesta de algún componente indivisible a la escala más pequeña", dice Douglas Jerolmack, geofísico en la  School of Arts & Sciences Department of Earth and Environmental Science and the School of Engineering y en  el Applied Science's Department of Mechanical Engineering and Applied Mechanics de la UP. "Pero esa comprensión era solo conceptual; nada de lo que conocemos actualmente de los átomos deriva de lo que nos dijo Platón.

"Lo interesante aquí es que lo que encontramos en las rocas, o en la tierra, es que hay más de una línea conceptual que nos lleva de regreso a Platón. Resulta que la concepción de Platón sobre el elemento tierra formado por cubos es, literalmente, la estadística modelo promedio para la tierra real. Y eso es simplemente alucinante ".

 

El hallazgo del grupo inició con modelos geométricos desarrollados por el matemático Gábor Domokos de Budapest University of Technology and Economics, cuyo trabajo predijo que las rocas naturales se fragmentarían en formas cúbicas.

"Este documento es el resultado de tres años de pensamiento y trabajo serios, pero se trata de una idea central", dice Domokos. "Si toma una forma poliédrica tridimensional, córtela al azar en dos fragmentos y luego córtela una y otra vez, obtendrá una gran cantidad de formas poliédricas diferentes. Pero en un sentido promedio, la forma resultante de los fragmentos es un cubo."

 

Domokos invitó a dos físicos teóricos húngaros a participar en el grupo: Ferenc Kun, un experto en fragmentación, y János Török, un experto en modelos estadísticos y computacionales. Después de discutir el potencial del descubrimiento, dice Jerolmack, los investigadores húngaros llevaron sus hallazgos a Jerolmack para trabajar juntos en las cuestiones geofísicas; en otras palabras, "¿Cómo permite la naturaleza que esto suceda?"

"Cuando le llevamos esto a Doug, dijo: 'Esto es un error o esto es algo grandioso'", recuerda Domokos. "Trabajamos hacia atrás para comprender la física que da como resultado estas formas".

Fundamentalmente, la pregunta que respondieron es qué formas se crean cuando las rocas se rompen en pedazos. Sorprendentemente, descubrieron que la conjetura matemática central une los procesos geológicos no solo en la Tierra sino también alrededor del sistema solar.

"La fragmentación es este proceso ubicuo en el que los materiales planetarios se están rompiendo continuamente", dice Jerolmack. "El sistema solar está lleno de hielo y rocas que se rompen sin cesar. Este trabajo nos da una firma de ese proceso que nunca hemos visto antes".

El entender este proceso implica que los componentes que se desprenden de un objeto anteriormente sólido deben encajar sin huecos, como un plato caído a punto de romperse. Como resultado, la única de las llamadas formas platónicas (poliedros con lados de igual longitud) que encajan sin espacios son los cubos.

"Una cosa que hemos especulado en nuestro grupo es que, posiblemente, Platón miró un afloramiento de roca y después de procesar o analizar la imagen inconscientemente en su mente, conjeturó que la forma promedio es algo así como un cubo", dice Jerolmack.

 

"Platón era muy sensible a la geometría", agrega Domokos. Según la tradición, la frase "Que no entre nadie ignorante de la geometría" estaba grabada en la puerta de la Academia de Platón. "Sus intuiciones, respaldadas por su amplio pensamiento sobre la ciencia, pueden haberlo llevado a esta idea sobre los cubos", dice Domokos.

Para probar si sus modelos matemáticos eran verdaderos en la naturaleza, el equipo midió una amplia variedad de rocas, cientos que recolectaron y miles más de conjuntos de datos recopilados previamente. No importa si las rocas se habían desgastado naturalmente de un gran afloramiento o si habían sido dinamitados por humanos, el equipo encontró un buen ajuste al promedio cúbico.

Sin embargo, existen formaciones rocosas especiales que parecen romper la "regla" cúbica. La Calzada del Gigante en Irlanda del Norte, con sus elevadas columnas verticales, es un ejemplo, formado por el inusual proceso de enfriamiento del basalto. Estas formaciones, aunque raras, están también enmarcadas por la concepción matemática de fragmentación del equipo; sólo se explican por procesos fuera de lo común en los procesos naturales.

 

"El mundo es un lugar desordenado", dice Jerolmack. "Nueve de cada 10 veces, si una roca se separa, se comprime o se corta, y por lo general estas fuerzas ocurren juntas, terminas con fragmentos que son, en promedio, formas cúbicas. Es sólo si tienes una muy especial condición de estrés que obtienes algo más. La tierra simplemente no hace esto a menudo ".

Los investigadores también exploraron la fragmentación en dos dimensiones, o en superficies delgadas que funcionan como formas bidimensionales, con una profundidad que es significativamente menor que el ancho y la longitud. Allí, los patrones de fractura son diferentes, aunque el concepto central de dividir polígonos y llegar a formas promedio predecibles aún se mantiene.

 

"Resulta que en dos dimensiones es igualmente probable que obtengas un rectángulo o un hexágono en la naturaleza", dice Jerolmack. "No son hexágonos verdaderos, pero son el equivalente estadístico en un sentido geométrico. Puedes pensarlo como un agrietamiento de pintura; una fuerza está actuando para separar la pintura por igual de diferentes lados, creando una forma hexagonal cuando se agrieta ".

En la naturaleza, se pueden encontrar ejemplos de estos patrones de fractura bidimensionales en capas de hielo, barro seco o incluso en la corteza terrestre, cuya profundidad es muy superior a su extensión lateral, lo que le permite funcionar como de facto ocurre en un material bidimensional. Anteriormente se sabía que la corteza terrestre se fracturaba de esta manera, pero las observaciones del grupo respaldan la idea de que el patrón de fragmentación resulta de la tectónica de placas.

La identificación de estos patrones en la roca puede ayudar a predecir fenómenos como los riesgos de caída de rocas o la probabilidad y ubicación de los flujos de fluidos, como el petróleo o el agua, en las rocas.

Para los investigadores, encontrar lo que parece ser una regla fundamental de la naturaleza que surge de ideas milenarias ha sido una experiencia intensa pero satisfactoria.

 

 

"Hay muchos granos de arena, guijarros y asteroides, y todos evolucionan astillándose de manera universal", dice Domokos, quien también es co-inventor del Gömböc, la primera forma convexa conocida con el mínimo número, sólo dos, de puntos de equilibrio estático. El astillado por colisiones elimina gradualmente los puntos de equilibrio, pero las formas no llegan a convertirse en un Gömböc; este último aparece como un punto final inalcanzable de este proceso natural.

El resultado actual muestra que el punto de partida puede ser una forma geométrica similarmente icónica: el cubo con sus 26 puntos de equilibrio. "El hecho de que la geometría pura proporcione estos soportes para un proceso natural omnipresente, me da felicidad", dice.

"Cuando recoges una roca en la naturaleza, no es un cubo perfecto, pero cada uno es una especie de sombra estadística de un cubo", agrega Jerolmack. "Recuerda la alegoría de Platón sobre la cueva. Postuló una forma idealizada que era esencial para comprender el universo, pero todo lo que vemos son sombras distorsionadas de esa forma perfecta".

 

Fuente: https://penntoday.upenn.edu/news/plato-was-right-earth-made-average-cubes

 

Ciertamente, ahora sabemos que Marte es un árido, helado e inhóspito desierto, pero ¿alguna vez tuvo vida el vecino más cercano de la Tierra? Es una pregunta que ha preocupado a los científicos durante siglos y ha generado innumerables documentos de ciencia ficción. Al respecto, un querido colega nos comparte hoy el presente artículo publicado por la Agence France-Presse (AFP) el pasado 11 de julio de 2020 y escrito por Juliette Collen y Kelly Macnamara en ParÍs. Veamos de qué se trata…

En estos días, tres proyectos de exploración espacial se están preparando para iniciar algunas de las iniciativas más ambiciosas hasta el momento para encontrar una respuesta.

Los científicos creen que hace cuatro mil millones de años los dos planetas, la Tierra y Marte, tenían el potencial de generar la vida, pero gran parte de la historia de Marte es un enigma.

 

Los nuevos equipos de exploración de Marte de Estados Unidos, Emiratos Árabes Unidos y China se lanzarán este verano.

Su objetivo no es encontrar la vida marciana (los científicos creen que nada sobreviviría allí ahora) sino buscar posibles rastros de formas de vida pasadas.

Estos vastos y costosos programas podrían resultar inútiles. Pero los astrobiólogos dicen que el planeta rojo sigue siendo nuestra mejor esperanza para encontrar un registro de la vida en otros planetas.

Marte es "el único planeta con posibilidades concretas de encontrar rastros de vida extraterrestre porque sabemos que hace miles de millones de años era habitable", dijo Jean-Yves Le Gall, presidente de la agencia espacial francesa CNES en una conferencia telefónica con periodistas esta semana.

Le Gall es uno de los arquitectos de la sonda exploratoria Mars 2020 de la NASA, cuyo lanzamiento está programado para finales de julio, cuando la Tierra y Marte permanezcan en el punto más cercano entre ellos durante más de dos años.

El proyecto de más de 2.5 mil millones de dólares es el último intento, y el más avanzado tecnológicamente, para descubrir los secretos más profundos de Marte.

Pero no está sólo, ya que el entusiasmo por la exploración espacial se ha reavivado.

Noticias de Marte

La investigación científica del planeta rojo comenzó en serio en el siglo XVII.

En 1609, el italiano Galileo Galilei observó a Marte con un telescopio primitivo y, al hacerlo, se convirtió en la primera persona en utilizar la nueva tecnología con fines astronómicos.

Cincuenta años después, el astrónomo holandés Christiaan Huygens utilizó un telescopio más avanzado de su propio diseño para hacer el primer dibujo topográfico del planeta.

Marte, en comparación con la Luna, "desolada y vacía", durante mucho tiempo parecía prometedor para la posible habitabilidad de los microorganismos, escribió el astrofísico Francis Rocard en su reciente ensayo "Últimas noticias de Marte".

Pero el Siglo XX presentó reveses.

En la década de 1960, cuando la carrera por poner a un hombre en la Luna se aceleraba hacia su deslumbrante "Salto gigante", Dian Hitchcock y James Lovelock estaban frenando las esperanzas de encontrar vida en Marte.

Su investigación analizó la atmósfera del planeta en busca de un desequilibrio químico, gases que reaccionan entre sí, lo que podría insinuar la vida.

"Si no hay reacción, probablemente no haya vida allí", dijo Lovelock a la AFP.

"Y ese fue el caso: Marte tiene una atmósfera que es completamente inactiva en lo que respecta a la química".

Su conclusión se confirmó una década después, cuando los satélites Viking amarizaron y tomaron muestras atmosféricas y de suelo que mostraban que el planeta ya no era habitable.

Este descubrimiento fue una "verdadera bomba" para la investigación de Marte, dijo Rocard a la AFP.

Los programas de Marte esencialmente se detuvieron durante 20 años.

Luego, en 2000, los científicos hicieron un descubrimiento que cambió el juego completamente: descubrieron que el agua una vez fluyó sobre su superficie.

 

Sigue el agua

 

Este hallazgo tentador ayudó a reavivar el interés latente en la exploración de Marte.

Los científicos estudiaron detenidamente imágenes de barrancos y cañones, recorriendo la superficie marciana en busca de evidencia de agua líquida.

Más de 10 años después, en 2011, la encontraron definitivamente.

La estrategia de "seguir el agua, seguir el carbono, seguir la luz" ha dado sus frutos, dijo Rocard.

Cada misión desde el descubrimiento del agua ha traído "más y más evidencia a la luz de que Marte no está tan muerto como pensábamos", dijo a la AFP Michel Viso, un astrobiólogo del CNES.

El último rover de los EUA en hacer el viaje, llamado Perseverance, está programado para aterrizar en febrero del próximo año después de un viaje de seis meses desde el momento del lanzamiento.

 

La sonda es quizás la más esperada hasta ahora. Su lugar de aterrizaje, el cráter Jezero, puede haber sido una vez un amplio delta de río de 45 kilómetros.

Rico en rocas sedimentarias, como arcilla y carbonatos, los mismos tipos de rocas que contienen restos fósiles en la Tierra, Jezero podría ser un tesoro.

O tal vez no.

"Sabemos que el agua fluyó una vez, pero la pregunta sigue siendo: ¿por cuánto tiempo?" preguntó Rocard. "Ni siquiera sabemos cuánto tiempo tardó la vida en aparecer en la Tierra".

Si la misión puede devolver estas rocas a la Tierra, podrían dar respuestas a las preguntas que han confundido a los científicos durante mucho tiempo.

Pero tendrán que esperar al menos 10 años para que el análisis esté disponible.

Viso dijo que los resultados probablemente serán "un conjunto de pistas" en lugar de una respuesta clara.

 

En el inicio

 

Los científicos también están considerando quizás una pregunta aún más profunda.

Si la vida nunca existió en Marte, ¿por qué no?

La respuesta a esto podría enriquecer nuestra comprensión de cómo se desarrolló la vida en nuestro propio planeta, dijo Jorge Vago, el portavoz de la Agencia Espacial Europea.

 

Debido al cambio de la tectónica de placas debajo del núcleo de la Tierra, es extremadamente difícil encontrar rastros de vida aquí antes de hace 3,500 millones de años.

Marte no tiene placas tectónicas, por lo que existe la posibilidad de que se conserven allí signos de vida de cuatro mil millones de años que "uno nunca podría encontrar en la Tierra", dijo Vago.

Y si los últimos programas de Marte no logran encontrar signos de la antigua vida marciana, siempre hay más fronteras para explorar.

 

 

Encelade y Europa, dos de las lunas de Saturno y Júpiter, respectivamente, se consideran contendientes prometedores.

Aunque alcanzarlos sigue siendo más ciencia ficción que realidad.

 

Fuente: https://mb.com.ph/2020/07/11/the-quest-to-find-signs-of-ancient-life-on-mars/

 

 

Lunes, 06 Julio 2020 05:43

¿Por qué las plantas son verdes?

Cuando la luz del Sol brilla sobre una hoja, esta cambia rápidamente pues las plantas deben protegerse de las repentinas oleadas de energía solar. Para hacer frente a estos cambios, los organismos fotosintéticos, desde plantas hasta bacterias, han desarrollado numerosas tácticas. Sin embargo, los científicos no habían podido identificar, hasta ahora, el principio de diseño subyacente.

Un estimado colega nos comparte información sobre los hallazgos de un equipo internacional de científicos, dirigido por el físico Nathaniel M. Gabor, de la University of California en Riverside (UC- Riverside) quienes han construido un modelo que reproduce una característica general de la recolección de luz fotosintética, observada en muchos organismos fotosintéticos. Esta información se publicó en el boletín de noticias de la UC-Riverside el pasado 25 de junio en el artículo escrito por Iqbal Pittalwala aquí reproducido. Veamos de qué se trata….

El concepto de cosecha de luz se refiere aquí a la recolección de energía solar por moléculas de clorofila unidas a proteínas. En la fotosíntesis, el proceso por el cual las plantas verdes y algunos otros organismos usan la luz solar para sintetizar los alimentos a partir del dióxido de carbono y el agua, la cosecha de energía luminosa comienza con la absorción de la luz solar.

El modelo de los investigadores toma prestadas ideas de la ciencia de redes complejas, un campo de estudio que explora la operación eficiente tanto en redes de teléfonos celulares, como en las del cerebro o en las redes de distribución eléctrica. El modelo describe una red simple que es capaz de ingresar luz de dos colores diferentes y, sin embargo, generar una tasa constante de energía solar. Esta elección inusual de solo dos entradas tiene consecuencias notables.

 

"Nuestro modelo muestra que al absorber solo colores de luz muy específicos, los organismos fotosintéticos pueden protegerse automáticamente contra cambios repentinos, o 'ruido', en la energía solar, lo que resulta en una conversión de energía notablemente eficiente", dijo Gabor, profesor asociado de física y astronomía de la UC-Riverside, que dirigió el estudio que aparece el 25 de junio pasado apareció en la revista Science. "Las plantas verdes se muestran verdes y las bacterias púrpuras se muestran púrpuras porque solo las regiones específicas del espectro del que absorben son adecuadas para la protección contra la energía solar que cambia rápidamente".

Gabor comenzó a pensar en la investigación de la fotosíntesis hace más de una década, cuando era estudiante de doctorado en la Universidad de Cornell. Se preguntó por qué las plantas rechazaban la luz verde, la luz solar más intensa. Con los años, trabajó con físicos y biólogos de todo el mundo para aprender más sobre los métodos estadísticos y la biología cuántica de la fotosíntesis.

 

Richard Cogdell, botánico de la Universidad de Glasgow en el Reino Unido y coautor del trabajo de investigación, alentó a Gabor a extender el modelo para incluir una gama más amplia de organismos fotosintéticos que crecen en entornos donde el espectro solar incidente es muy diferente.

"Con gran regocijo, pudimos demostrar que el modelo funcionaba en otros organismos fotosintéticos además de las plantas verdes, y que el modelo identificaba una propiedad general y fundamental de la cosecha de luz fotosintética", dijo. "Nuestro estudio muestra cómo, al elegir dónde absorbe la energía solar en relación con el espectro solar incidente, puede minimizar el ruido en la salida, información que puede utilizarse para mejorar el rendimiento de las células solares".

El coautor Rienk van Grondelle, un influyente físico experimental de la Vrije Universiteit Amsterdam en los Países Bajos que trabaja en los procesos físicos primarios de la fotosíntesis, dijo que el equipo encontró que los espectros de absorción de ciertos sistemas fotosintéticos seleccionan ciertas regiones de excitación espectral que cancelan el ruido y maximizan la energía almacenado.

"Este principio de diseño muy simple también podría aplicarse en el diseño de células solares artificiales", dijo van Grondelle, quien tiene una vasta experiencia en la recolección de luz fotosintética.

Gabor explicó que las plantas y otros organismos fotosintéticos tienen una amplia variedad de tácticas para evitar daños debido a la sobreexposición al Sol, que van desde mecanismos moleculares de liberación de energía hasta el movimiento físico de la hoja para seguir al Sol. Las plantas incluso han desarrollado una protección efectiva contra la luz ultravioleta, al igual que en una crema protectora solar.

"En el complejo proceso de la fotosíntesis, está claro que proteger al organismo de la sobreexposición es el factor que impulsa la producción exitosa de energía, y esta es la inspiración que usamos para desarrollar nuestro modelo", dijo. "Nuestro modelo incorpora una física relativamente simple, sin embargo, es consistente con un amplio conjunto de observaciones en biología. Esto es notablemente raro. Si nuestro modelo puede soportar los exhaustivos experimentos que estamos realizando, seguramente podremos encontrar aún mayores concordancias entre la teoría y las observaciones, dando una visión rica del funcionamiento interno de la naturaleza ".

 

 

Para construir el modelo, Gabor y sus colegas aplicaron la física directa de las redes a los detalles complejos de la biología, y pudieron hacer declaraciones claras, cuantitativas y genéricas sobre organismos fotosintéticos muy diversos.

"Nuestro modelo es la primera explicación impulsada por la hipótesis de por qué las plantas son verdes, y damos una hoja de ruta para probar el modelo a través de experimentos más detallados", dijo Gabor.

Gabor agregó que la fotosíntesis puede considerarse como un fregadero de la cocina, donde un grifo ingresa agua y un desagüe permite que el agua salga. Si el flujo hacia el fregadero es mucho mayor que el flujo hacia afuera, el fregadero se desborda y el agua se derrama por todo el piso.

"En la fotosíntesis, si el flujo de energía solar hacia la red de captación de luz es significativamente mayor que el flujo de salida, la red fotosintética debe adaptarse para reducir el repentino desbordamiento de energía", dijo. "Cuando la red no logra manejar estas fluctuaciones, el organismo intenta expulsar la energía extra. Al hacerlo, el organismo sufre estrés oxidativo, que daña las células".

 

Los investigadores se sorprendieron por lo general y simple que es su modelo.

"La naturaleza siempre te sorprenderá", dijo Gabor. "Algo que parece tan complicado y complejo podría funcionar en base a unas pocas reglas básicas. Aplicamos el modelo a organismos en diferentes nichos fotosintéticos y continuamos reproduciendo espectros de absorción precisos. En biología, hay excepciones a cada regla, tanto que el hallazgo de una regla suele ser muy difícil. Sorprendentemente, parece que hemos encontrado una de las reglas de la vida fotosintética ".

Gabor señaló que en las últimas décadas, la investigación de la fotosíntesis se ha centrado principalmente en la estructura y función de los componentes microscópicos del proceso fotosintético.

 

"Los biólogos saben bien que los sistemas biológicos generalmente no están finamente ajustados dado el hecho de que los organismos tienen poco control sobre sus condiciones externas", dijo. "Esta contradicción hasta ahora no se ha abordado porque no existe un modelo que conecte los procesos microscópicos con las propiedades macroscópicas. Nuestro trabajo representa el primer modelo físico cuantitativo que aborda esta contradicción".

A continuación, con el apoyo de varias subvenciones recientes, los investigadores diseñarán una nueva técnica de microscopía para probar sus ideas y avanzar en la tecnología de los experimentos de fotobiología utilizando herramientas de óptica cuántica.

"Hay mucho que entender sobre la naturaleza, y solo se ve más hermosa a medida que desentrañamos sus misterios", dijo Gabor.

 

Fuente: https://news.ucr.edu/articles/2020/06/25/why-are-plants-green

 

 

Las ciudades modernas de hoy, desde Denver hasta Dubai, podrían aprender una o dos cosas de las antiguas comunidades Pueblo, que una vez se extendieron por el suroeste de los Estados Unidos y el norte de México. Al respecto, un estimado colega nos comparte el presente artículo escrito por Daniel Strain y publicado el pasado 19 de junio (2020) en el boletín de noticias de la University of Colorado en Boulder, Co (UC-Boulder). Veamos qué nos comentan:

Uno de las primeras premisas que las comunidades antiguas fueron afirmando es que mientras más personas vivan juntas, mejores serán los niveles de vida.

Ese hallazgo proviene de un estudio publicado hoy en la revista Science Advances que fue dirigido por Scott Ortman, un arqueólogo de la Universidad de Colorado Boulder. Existe un número creciente de arqueólogos y antropólogos que argumentan que el pasado del mundo puede ser la clave de su futuro. ¿Qué lecciones pueden aprender las personas que viven hoy de los éxitos y fracasos de las civilizaciones de hace cientos o miles de años?

Recientemente, Ortman y José Lobo, de la Universidad Estatal de Arizona, se sumergieron profundamente en los datos de las ciudades agrícolas que salpicaban el Valle del Río Grande entre los siglos XIV y XVI. Las metrópolis modernas deberían tomar nota: a medida que las aldeas Pueblo se hicieron más grandes y densas, su producción per cápita de alimentos y otros bienes también pareció aumentar.

En otras palabras, calles llenas con mucho movimient, podrían conducir a ciudadanos con mejores posibilidades económicas y muy posiblemente con una mejor calidad de vida.

"Vemos aquí una situación de escala", dijo Ortman, profesor asistente en el Departamento de Antropología, que también está afiliado al Instituto Santa Fe en Nuevo México. "Mientras más personas trabajan juntas, más producen por persona".

Si lo mismo es cierto hoy en día, sigue siendo una pregunta abierta, especialmente en medio de los impactos sin precedentes de la pandemia de covid-19 en las ciudades y la proximidad humana. Pero los resultados del suroeste soleado sugieren que es una idea que vale la pena explorar.

"El registro arqueológico puede ayudarnos a aprender sobre los problemas que nos preocupan del mundo actual de tal forma que no los podríamos hacer así utilizando los datos disponibles de las sociedades modernas", dijo Ortman.

 

Los buenos platillos

 

Las investigaciones forman parte de una rama de un esfuerzo que Ortman lidera llamado Proyecto de Reactores Sociales, la cual ha explorado patrones de crecimiento en civilizaciones desde la antigua Roma hasta el mundo inca.

Es un intento de perseguir una idea propuesta por primera vez en el siglo XVIII por Adam Smith, a menudo conocido como el padre de la economía moderna. En The Wealth of Nations, Smith defendió los beneficios fundamentales del tamaño del mercado: que si se facilita el comercio de más personas, la economía crecerá.

Simplemente mire cualquier ciudad donde seguramente encontrara una peluquería junto a una panadería y una guardería para perros.

"A medida que las personas interactúan con mayor frecuencia, una persona puede realizar menos cosas por sí misma y obtener más de lo que necesita de sus contactos sociales", dijo Ortman.

El problema, explicó, es que ese crecimiento "que impulsa la concentración de personas" es difícil de aislar en las ciudades grandes y complejas de hoy. Esto mismo no resulta cierto para el Valle del Río Grande.

Antes de la llegada de los españoles en el siglo XVI, cientos de aldeas abarcaban la región cercana a lo que hoy es Santa Fe. Estos asentamientos variaron en tamaño desde unas pocas docenas de residentes hasta unas tres mil personas, la mayoría de las cuales se ganaban la vida cultivando entre otras cosas el maíz y el algodón.

Tal estilo de vida de subsistencia no significaba que estas comunidades fueran simples.

 

"La visión tradicional en la historia antigua era que el crecimiento económico no sucedió hasta el comienzo de la revolución industrial", dijo Ortman.

Él y Lobo decidieron poner a prueba esa suposición. El dúo estudió detenidamente una base de datos exhaustiva de hallazgos arqueológicos de la región, capturando todo, desde la cantidad y el tamaño de las habitaciones en las comunidades de Pueblo hasta la cerámica y montones de basura.

 

Descubrieron una tendencia clara: cuando las aldeas se volvieron más pobladas, sus residentes parecían mejorar en promedio, exactamente como Smith predijo. Los espacios habitables crecieron en tamaño y las familias recolectaron más cerámica pintada.

"Se podría considerar como más platos para compartir comidas juntos", dijo Ortman.

Conexión social

Ese crecimiento, descubrió el equipo, también parecía seguir un patrón que los investigadores del Proyecto de Reactores Sociales han visto en una variedad de civilizaciones a lo largo de la historia. Cada vez que las aldeas duplicaron su tamaño, los marcadores de crecimiento económico aumentaron aproximadamente un 16% en promedio.

Ortman dijo que el efecto no ocurre de la misma manera en todas partes. Factores como la desigualdad y el racismo, por ejemplo, pueden evitar que los residentes urbanos trabajen juntos, incluso cuando viven en espacios reducidos.

Pero, agregó Ortman, estas comunidades de Pueblo tienen una lección importante para las sociedades modernas: cuanto más personas puedan conectarse con otras, más prósperas se vuelven.

"En igualdad de condiciones, la urbanización debería conducir a mejoras en las condiciones materiales de vida para las personas en todas partes", dijo. "Sospechamos que es por eso que el mundo continúa urbanizándose, a pesar de todos los problemas asociados".

 

Fuente:

https://www.colorado.edu/today/2020/06/15/ancient-societies-hold-lessons-modern-cities

 

Si usted recuerda, "Transpórtame " es una de las frases más famosas de la serie Star Trek. Es el comando que se utilizaba cuando un personaje deseaba teletransportarse desde una ubicación remota de regreso a la nave espacial Enterprise.

 

Si bien la teletransportación humana solo existe en la ciencia ficción, la teletransportación es posible en el mundo subatómico de la mecánica cuántica, aunque no de la manera que normalmente se representa en la televisión. En el mundo cuántico, la teletransportación implica el transporte de información, en lugar del transporte de materia. Al respecto, un estimado colega nos comparte el presente artículo escrito por Lindsey Valich y publicado en el boletín de noticias de la University of Rochester (UR) el 19 de junio pasado. Veamos de qué se trata…

El año pasado, los científicos confirmaron que la información podía pasar entre fotones en chips de computadora, incluso cuando los fotones no estaban físicamente vinculados.

Ahora, según una nueva investigación de la University of Rochester (UR) y la“Purdue University, la teletransportación también puede ser posible entre electrones.

En un artículo publicado en Nature Communications y uno que aparece en Physical Review X, los investigadores -incluidos John Nichol, profesor asistente de física en Rochester, y Andrew Jordan, profesor de física en Rochester- exploran nuevas formas de crear interacciones entre electrones distantes en mecánica cuántica. La investigación es un paso importante para mejorar la computación cuántica, que, a su vez, tiene el potencial de revolucionar la tecnología, la medicina y la ciencia al proporcionar procesadores y sensores más rápidos y eficientes.

“Acción espeluznante a distancia”

La teletransportación cuántica es una demostración de lo que Albert Einstein llamó "acción fantasmagórica a distancia", también conocida como entrelazamiento cuántico. En el entrelazamiento, uno de los conceptos básicos de la física cuántica, las propiedades de una partícula afectan las propiedades de otra, incluso cuando las partículas están separadas por una gran distancia. La teletransportación cuántica involucra dos partículas entrelazadas y distantes en las cuales el estado de una tercera partícula "teletransporta" instantáneamente su estado a las dos partículas entrelazadas.

La teletransportación cuántica es un medio importante para transmitir información en la computación cuántica. Mientras que una computadora típica consta de miles de millones de transistores, llamados bits, las computadoras cuánticas codifican la información en bits cuánticos o qubits. Un bit tiene un único valor binario, que puede ser "0" o "1", pero los qubits pueden ser "0" y "1" al mismo tiempo. La capacidad de los qubits individuales de ocupar simultáneamente múltiples estados subyace al gran poder potencial de las computadoras cuánticas.

Los científicos han demostrado recientemente la teletransportación cuántica mediante el uso de fotones electromagnéticos para crear pares de qubits entrelazados de forma remota.

 

Sin embargo, los Qubits hechos de electrones individuales también son prometedores para transmitir información en semiconductores.

"Los electrones individuales son qubits prometedores porque interactúan muy fácilmente entre sí, y los qubits de electrones individuales en semiconductores también son escalables", dice Nichol. "Crear de manera confiable interacciones de larga distancia entre electrones es esencial para la computación cuántica".

 

Sin embargo, la creación de pares de qubits entrelazados de electrones que abarquen largas distancias, lo cual es necesario para la teletransportación, ha resultado difícil: mientras que los fotones se propagan naturalmente a largas distancias, los electrones generalmente están confinados en un solo lugar.

Pares de electrones entrelazados

 

Para demostrar la teletransportación cuántica usando electrones, los investigadores utilizaron una técnica desarrollada recientemente basada en los principios del acoplamiento de intercambio de Heisenberg. Un electrón individual es como un imán de barra con un polo norte y un polo sur que pueden apuntar hacia arriba o hacia abajo. La dirección del polo, ya sea que el polo norte apunte hacia arriba o hacia abajo, por ejemplo, se conoce como el momento magnético del electrón o el estado de giro cuántico. Si ciertos tipos de partículas tienen el mismo momento magnético, no pueden estar en el mismo lugar al mismo tiempo. Es decir, dos electrones en el mismo estado cuántico no pueden sentarse uno encima del otro. Si lo hicieran, sus estados cambiarían de un lado a otro a tiempo.

Los investigadores utilizaron la técnica para distribuir pares de electrones entrelazados y teletransportar sus estados de espín.

 

"Brindamos evidencia de 'intercambio de entrelaces', en el que creamos entrelazamiento de dos electrones a pesar de que las partículas nunca interactúan, y 'teletransportación de puerta cuántica', una técnica potencialmente útil para la computación cuántica mediante teletransportación", dice Nichol. "Nuestro trabajo muestra que esto se puede hacer incluso sin fotones".

Los resultados allanan el camino para futuras investigaciones sobre teletransportación cuántica que involucren estados de espín de toda la materia, no sólo de fotones, y proporcionan más evidencia de las capacidades sorprendentemente útiles de electrones individuales en semiconductores qubit.

 

Fuente:

https://www.rochester.edu/newscenter/quantum-teleportation-to-improve-quantum-computing-441352/

 

Un querido colega y amigo, nos comparte el presente artículo escrito por Jennifer Chu y publicado el pasado 8 de junio de 2020 en el boletín digital del Massachusetts Institute of Technology (MIT). En este artículo se informa que ingenieros del MIT diseñaron una especie de “cerebro-chip”, más diminuto  que un confeti, y que está integrado con decenas de miles de sinapsis cerebrales artificiales conocidas como memristors, componentes basados en silicio que imitan las sinapsis de transmisión de información en el cerebro humano. Veamos de que se trata….

 

Para iniciar recordemos que una sinapsis es una aproximación (funcional) intercelular especializada entre neuronas que permite a las células nerviosas comunicarse con otras a través de los axones y dendritas, transformando una señal eléctrica en otra química.

Los investigadores tomaron prestados los principios de la metalurgia para fabricar cada memristor de aleaciones de plata y cobre, junto con silicio. Cuando hicieron funcionar el chip a través de varias tareas visuales, el chip pudo "recordar" las imágenes almacenadas y reproducirlas muchas veces, en versiones que eran más nítidas y limpias en comparación con los diseños de memristor existentes hechos con elementos sin aleaciones.

 

Sus resultados, publicados hoy en la revista Nature Nanotechnology, demuestran un nuevo y prometedor diseño de memristores para dispositivos neuromórficos, componentes electrónicos que se basan en un nuevo tipo de circuito que procesa la información de una manera que imita la arquitectura neuronal del cerebro. Dichos circuitos inspirados en el cerebro podrían integrarse en dispositivos portátiles pequeños y llevarían a cabo tareas informáticas complejas que sólo las supercomputadoras de hoy en día pueden manejar.

"Hasta ahora, las redes de sinapsis artificiales existen como software. Estamos tratando de construir dispositivos (hardware) de red neuronal real para sistemas de inteligencia artificial portátiles", dice Jeehwan Kim, profesor asociado de ingeniería mecánica en el MIT. "Imagine conectar un dispositivo neuromórfico a una cámara en su automóvil y hacer que reconozca las luces y los objetos y tome una decisión de inmediato, sin tener que conectarse a Internet. Esperamos utilizar memorias eficientes en energía para realizar esas tareas en el sitio, en tiempo real."

 

Iones errantes

Los memristors, o transistores de memoria, son un elemento esencial en la computación neuromórfica. En un dispositivo neuromórfico, un memristor serviría como transistor en un circuito, aunque su funcionamiento se asemejaría más a una sinapsis cerebral: la unión entre dos neuronas. La sinapsis recibe señales de una neurona, en forma de iones, y envía una señal correspondiente a la siguiente neurona.

 

Un transistor en un circuito convencional transmite información al cambiar entre uno de los dos únicos valores, 0 y 1, y hacerlo solo cuando la señal que recibe, en forma de corriente eléctrica, es de una intensidad particular. En contraste, un memristor funcionaría a lo largo de un gradiente, muy parecido a una sinapsis en el cerebro. La señal que produce variará dependiendo de la intensidad de la señal que recibe. Esto permitiría que un solo memristor tenga muchos valores y, por lo tanto, lleve a cabo una gama de operaciones mucho más amplia que los transistores binarios.

 

 

Al igual que una sinapsis cerebral, un memristor también podría "recordar" el valor asociado con una intensidad de corriente dada y producir exactamente la misma señal la próxima vez que reciba una corriente similar. Esto podría garantizar que la respuesta a una ecuación compleja, o la clasificación visual de un objeto sea confiable, una hazaña que normalmente involucra múltiples transistores y condensadores.

 

En última instancia, los científicos imaginan que los memristores requerirían mucho menos espacio en chip que los transistores convencionales, lo que permitiría dispositivos informáticos portátiles y potentes que no dependen de supercomputadores, o incluso conexiones a Internet.

 

Sin embargo, los diseños de memristor existentes tienen un rendimiento limitado. Un solo memristor está hecho de un electrodo positivo y negativo, separado por un "medio de conmutación" o espacio entre los electrodos. Cuando se aplica un voltaje a un electrodo, los iones de ese electrodo fluyen a través del medio, formando un "canal de conducción" al otro electrodo. Los iones recibidos forman la señal eléctrica que el memristor transmite a través del circuito. El tamaño del canal iónico (y la señal que finalmente produce el memristor) debe ser proporcional a la fuerza del voltaje estimulante.

Kim dice que los diseños de memristor existentes funcionan bastante bien en casos en los que el voltaje estimula un gran canal de conducción o un fuerte flujo de iones de un electrodo a otro. Pero estos diseños son menos confiables cuando los memristors necesitan generar señales más sutiles, a través de canales de conducción más delgados.

Cuanto más delgado es un canal de conducción, y más liviano es el flujo de iones de un electrodo a otro, más difícil es que los iones individuales permanezcan juntos. En cambio, tienden a alejarse del grupo, disolviéndose dentro del medio. Como resultado, es difícil para el electrodo receptor capturar de manera confiable la misma cantidad de iones y, por lo tanto, transmitir la misma señal cuando se estimula con un cierto rango bajo de corriente.

 

Préstamo de metalurgia

 

Kim y sus colegas encontraron una forma de evitar esta limitación al tomar prestada una técnica de la metalurgia, la ciencia de fundir metales en aleaciones y estudiar sus propiedades combinadas.

 

"Tradicionalmente, los metalúrgicos intentan agregar diferentes átomos en una matriz masiva para fortalecer los materiales, y pensamos, ¿por qué no ajustar las interacciones atómicas en nuestro memristor y agregar algún elemento de aleación para controlar el movimiento de iones en nuestro medio?", dice Kim.

Los ingenieros suelen usar plata como material para el electrodo positivo de un memristor. El equipo de Kim revisó la literatura para encontrar un elemento que pudieran combinar con plata para mantener efectivamente unidos los iones de plata, mientras les permitía fluir rápidamente hacia el otro electrodo.

El equipo aterrizó en cobre como el elemento de aleación ideal, ya que es capaz de unirse tanto con plata como con silicio.

"Actúa como una especie de puente y estabiliza la interfaz plata-silicio", dice Kim.

 

Para hacer memristors usando su nueva aleación, el grupo primero fabricó un electrodo negativo de silicio, luego hizo un electrodo positivo depositando una pequeña cantidad de cobre, seguido de una capa de plata. Emparejaron los dos electrodos alrededor de un medio de silicio amorfo. De esta manera, modelaron un chip de silicio de milímetro cuadrado con decenas de miles de memristores.

Como primera prueba del chip, recrearon una imagen en escala de grises del escudo del Capitán América. Ellos equipararon cada píxel en la imagen a un memristor correspondiente en el chip. Luego modularon la conductancia de cada memristor que era relativa en fuerza al color en el píxel correspondiente.

El chip produjo la misma imagen nítida del escudo y pudo "recordar" la imagen y reproducirla muchas veces, en comparación con los chips hechos de otros materiales.

El equipo también operó el chip a través de una tarea de procesamiento de imágenes, programando los memristores para alterar una imagen, en este caso de Killian Court del MIT, de varias maneras específicas, incluyendo el enfoque y el desenfoque de la imagen original. Nuevamente, su diseño produjo las imágenes reprogramadas de manera más confiable que los diseños existentes de memristor.

 

"Estamos usando sinapsis artificiales para hacer pruebas de inferencia reales", dice Kim. "Nos gustaría desarrollar esta tecnología aún más para tener arreglos a mayor escala para realizar tareas de reconocimiento de imágenes. Y algún día, podría ser capaz de llevar cerebros artificiales para realizar este tipo de tareas, sin conectarse a supercomputadoras, Internet o la nube."

 

Esta investigación fue financiada, en parte, por los fondos del Comité de Apoyo a la Investigación del MIT, el Laboratorio de IA MIT-IBM Watson, el Laboratorio de Investigación Global de Samsung y la Fundación Nacional de Ciencia.

 

Fuente:

http://news.mit.edu/2020/thousands-artificial-brain-synapses-single-chip-0608

 

Página 3 de 8
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.