Ensenada, Baja California. (Agencia Informativa Conacyt).- Astrónomos de la Universidad Nacional Autónoma de México (UNAM) colaboraron en la investigación para explicar el caso de HuBi1, una nebulosa planetaria con una estructura opuesta a la convencional, ya que sus iones más cargados están más alejados de la estrella.

Las nebulosas planetarias son una de las fases finales de las estrellas comparables con el Sol y típicamente estos objetos concentran una alta ionización en el área más cercana a la estrella.

HuBi1 es una estrella similar al Sol y no solamente porque tiene una masa casi igual —tan solo 10 por ciento mayor— sino también porque se encuentra sola, es decir, no es un sistema binario de estrellas, lo que ofrece una visión de lo que podría ocurrir dentro de cinco mil millones de años, cuando el Sol llegue a las etapas finales de su vida.

Los hallazgos de la investigación internacional para explicar la existencia de HuBi1, liderada por el doctor Martín Guerrero, del Instituto de Astrofísica de Andalucía, fueron publicados el pasado 6 de agosto en la prestigiada revista Nature Astronomy, con el artículo The inside-out planetary nebula around a born-again star, del que los astrónomos de la UNAM son coautores.

En entrevista con la Agencia Informativa Conacyt, el doctor Christophe Morisset, investigador del Instituto de Astronomía de la UNAM, campus Ensenada, explicó que en los últimos 50 años la estrella HuBi1 disminuyó 10 mil veces su luminosidad.

“La nebulosa externa todavía emite luz porque todavía está ionizada y caliente pero este estado es como un fósil, algo similar a las agujas de los relojes que brillan en la noche cuando se apaga la luz. Si la estrella no se prende de nuevo, después de unos siglos se apagará completamente la nebulosa”.

Para explicar la estructura atípica de la nebulosa planetaria, Morisset en colaboración con el doctor Alexandre Alarie, desarrolló modelos de choque y modelos de enfriamiento.

“Por la parte interna, donde la estructura de ionización se observa al revés de lo común, con los iones más cargados ubicados lejos de la estrella central, imaginamos que se trata de un choque entre una nebulosa anterior y la última eyección de materia expulsada por la estrella hace poco tiempo, cuando sufrió una fase de 'renacimiento'”.

Morisset expuso que el choque se propaga en la nebulosa hacia afuera, calentando y ionizando el gas; para explicar este fenómeno hicieron modelos teóricos que reproducen las observaciones del estado del gas detrás del choque.

Observaciones desde el OAN

Comprender la cinemática de HuBi1, su evolución y las velocidades de sus gases, fue el trabajo realizado desde el Observatorio Astronómico Nacional (OAN) Sierra de San Pedro Mártir por la doctora Laurence Sabin, investigadora del Instituto de Astronomía de la UNAM, campus Ensenada.

“De la cinemática pudimos ver que no concordaba con lo que estábamos viendo y también podíamos hacer esos modelos para darnos una idea de cómo era esta nebulosa y por qué tiene esas propiedades morfocinemáticas”, comentó la investigadora en entrevista.

Para realizar estas observaciones, los astrónomos utilizaron en el OAN el Manchester Echelle Spectrograph, espectrógrafo de alta resolución que usa filtros nebulares.

“La idea de este instrumento es tener un montón de cortes y no solamente horizontales y verticales, sino en todas direcciones, porque entre más cortes hay, mejor se puede reconstruir el objeto y eso se hace con otra herramienta que se llama Shape, desarrollada por Wolfgang Steffen, otro investigador de la UNAM, Ensenada”.

El inicio de una aventura

Las observaciones de HuBi1 están lejos de haber concluido, pues los astrónomos continúan siguiéndola para ver su evolución, especialmente tras calcular que su fluorescencia se apagará en apenas unas centenas de años.

Para Christophe Morisset, esto representa el inicio de una aventura, ya que generaciones de futuros astrónomos tendrán la oportunidad de observar un objeto del que no hay antecedentes.

“Es el primero con esta estructura donde se combinan dos efectos muy raros: el efecto fósil por la parte externa, el efecto de choque por la parte interna, las dos cosas se encuentran por separado pero en el mismo objeto, es excepcional, es la primera vez y no creo que haya muchas”, destacó.

• Dra. Laurence Sabin
 Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

• 
Dr. Christophe Morisset
  Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

 

 

 

Publicado en Tecnologia

• El Sol es nuestra estrella más cercana, y entender su física ayudará a comprender la de todas las estrellas, indicó Juan Américo González, investigador de la unidad Michoacán del IGf de la UNAM, y director del Servicio de Clima Espacial México

• La misión de la sonda es acercarse más que cualquier otra nave para analizar la atmósfera del Sol, del que depende la vida en la Tierra. Se estima que llegará al punto más cercano en 2025.

El domingo pasado la sonda solar Parker inició su viaje al Sol, con la meta de aproximarse lo más posible, más que cualquier nave hasta ahora, a nuestra estrella. Se espera que en noviembre alcance la corona solar, y que llegue al punto más cercano en 2025.

Luego de tres intentos fallidos, la Agencia Aeroespacial de Estados Unidos (NASA) logró el lanzamiento desde Cabo Cañaveral, Florida. La sonda analizará la atmósfera de la estrella, de la que depende la vida en la Tierra.

“Estamos muy contentos. Es una misión importante que responderá preguntas que nos han intrigado por más de 60 años. Con los datos que se obtengan esperamos entender por qué su atmósfera es tan caliente, uno de los cuestionamientos de la física solar aún sin respuesta”, afirmó Juan Américo González Esparza, investigador del Instituto de Geofísica (IGf) de la UNAM.

El también jefe del Servicio de Clima Espacial México (SCiESMEX) –uno de los servicios que brinda el IGf unidad Michoacán y que está adscrito al Laboratorio Nacional de Clima Espacial (LANCE), también coordinado por él– indicó que la superficie del Sol tiene una temperatura de seis mil grados, por eso emite luz visible y en amarillo, principalmente.

“Pero su atmósfera, una capa más externa, está mucho más caliente y alcanza un millón de grados. Cómo se produce este calentamiento de la corona solar es algo que aún no tiene respuesta científica, y es relevante porque el Sol es nuestra estrella más cercana, y entender su física nos ayuda a comprender cómo es la de todas las estrellas”, explicó.

Viaje a 700 mil kilómetros por hora

La sonda solar Parker se convertirá en la nave más rápida construida por el ser humano: alcanzará casi los 700 mil kilómetros por hora. “Ha sido lanzada con uno de los cohetes más poderosos de la NASA, porque tenía que lograr una gran velocidad para acercarse al Sol”, detalló el doctor en física.

González Esparza detalló que la misión se hace sobre la Tierra, que se desplaza a 30 kilómetros por segundo alrededor de la estrella. “Para lanzar algo hacia el Sol primero tenemos que cancelar esa velocidad tangencial, y es por eso que es tan difícil hacerlo”.

Para sacar un satélite al espacio, el cohete debe alcanzar una velocidad aproximada de 11 kilómetros por segundo, pero nuestro planeta gira alrededor del Sol a 30 kilómetros por segundo, así que se requiere de un aparato muy poderoso, que además acelere y alcance la máxima velocidad posible saliendo de la Tierra.

Después, la sonda Parker se dirigirá a Venus y aprovechará la atracción de ese cuerpo celeste, que le dará un “jalón gravitacional” y la acelerará rumbo a nuestra estrella. “Dará vueltas alrededor de Venus y del Sol para tener mayor velocidad y poder acercarse cada vez más”.

Cerca de nuestra estrella

Además de la velocidad, Parker batirá un segundo récord: será la nave con mayor aproximación al Sol, siete veces más que Helios 2, la que más se aventuró en el pasado. La sonda aprovechará la gravedad de Venus para frenarse hasta en siete ocasiones, y gracias a estas maniobras se colocará a sólo 6.16 millones de kilómetros de su objetivo, más o menos 16 veces la distancia que hay entre la Tierra y la Luna. En sus siete años de misión programados, que se pueden prorrogar, completará 24 órbitas en torno a la estrella.

Para saber qué tanto se acercará, la investigadora principal de la misión, Nicola Fox (compañera de González Esparza en el Imperial College de Londres), ejemplificó que si pensáramos en la distancia entre el Sol y la Tierra como un campo de futbol americano con 100 yardas, la misión Parker se acercará a la yarda tres: “va a estar muy cerca del Sol”, refirió González Esparza.

La sonda está diseñada para soportar altas temperaturas, y una de las claves es un escudo térmico de 2.4 metros de diámetro y 14 centímetros de grosor, de una composición similar a las placas cerámicas de transbordadores espaciales, que frenará el viento solar y se calentará hasta los mil 400 grados Celsius, una temperatura mayor que la lava.

En honor al padre del viento solar

En esta misión, por primera vez en su historia la NASA honra a un científico vivo al designar su nombre a una nave espacial: Eugene Newman Parker, el padre del viento solar, es un astrofísico de la Universidad de Chicago, de 91 años de edad, que en 1958 fue pionero al acuñar la teoría de los vientos supersónicos solares.

“Parker hizo un modelo que explicó que el Sol no iba a ser capaz de contener a su atmósfera (muy caliente), y que ésta se empezaría a escapar formando un viento. Esto iba en contra de lo que los astrofísicos pensaban en aquel momento. Él demostró que la atmósfera de las estrellas se escapa como un viento con velocidades muy altas, y a esto le llamó ‘viento solar’”, finalizó González Esparza.

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

www.unamglobal.unam.mx 

 

 

Publicado en Tecnologia

Morelia, Michoacán. (Agencia Informativa Conacyt).- El paraíso de ciénegas, fauna ancestral, humedad y árboles de frutos y sombra terminó por la glaciación provocada por la caída de 18 millones de toneladas de meteorito en fragmentos hace 12 mil 800 años. ¿Imaginas un pasado de humedad, abundante y desconocida vegetación como alimento de gonfoterios, perezosos, bisontes, mamuts, huyendo por la ciénega del diente de sable? Las tierras michoacanas que hoy caminamos están construidas sobre el suelo que pisaron diversos animales ancestrales.

En un instante, el dióxido de carbono (CO2) llenó el ambiente y un incendio lo quemó todo, la Tierra ingresó en una nueva era de hielo, que desde muchos años se había atribuido al desprendimiento de un bloque de hielo entre Canadá y el noreste de Estados Unidos. Pero nunca se estudió el motivo de ese desprendimiento.

Las investigaciones de la doctora en ciencias de la Tierra Isabel Israde Alcántara, adscrita al Instituto de Investigaciones en Ciencias de la Tierra y miembro nivel II del Sistema Nacional de Investigadores (SNI), han ayudado a esclarecer que fue un meteorito el que causó la glaciación hace 12 mil 800 años.

La doctora se ha dedicado a buscar en diferentes partes de México evidencias de un impacto cósmico que tuvo muchas repercusiones desde el punto de vista geológico y ambiental.

Esto lo logró a partir del estudio de los lagos de Michoacán, específicamente el lago de Cuitzeo, que fue el que le dio el primer indicio.

El ciclo de las glaciaciones

"Cada 100 mil años, por los últimos dos millones, ha habido glaciaciones, es un ciclo de 100 mil años fríos y 10 mil años cálidos. A pesar de esa regla imperante, hubo una interrupción hace 18 mil años, cuando correspondía estar en tiempos cálidos, hubo un descenso abrupto de temperaturas que acabó con la vida animal y vegetal".

La científica afirma que se creía que era por el desprendimiento de un bloque de hielo proveniente del norte de América, frenando los sistemas de convección marina cálida y ese freno controló también la evaporación del agua, deteniendo las condiciones tibias de los continentes.

La causa de ese desprendimiento fue una incógnita por mucho tiempo, hasta 2007 que el investigador Richard Firestone encontró en Groenlandia una capa de combustión en los hielos.

“Ahora que se han roto muchas capas de hielo por el cambio climático, han quedado expuestas capas antiguas de hielo, esto permitió que el doctor viera una capa de carbono que pudo fechar arrojando que pertenecía a hace 12 mil 800 años".

Con estos datos, Firestone postuló la teoría de un impacto cósmico que catalizó el desprendimiento del bloque de hielo, generando las condiciones de un invierno nuclear por el impacto, la onda de choque, radiación y los vientos, señala la doctora. Eso acarreó carbón incendiando los bosques y haciendo que ese material subiera por la atmósfera depositándose en las capas de hielo. Es por eso que el investigador pudo encontrarlo en esas capas expuestas por el calentamiento global.

Relación del meteorito con los lagos michoacanos

Isabel Israde tiene una especialidad en estratigrafía, que es el estudio de las capas de la Tierra, y explica que las algas diatomeas pueden decir mucho sobre el pasado, debido a que a pesar de que su vida es de apenas 30 días, tienen un esqueleto de sílice que resguarda información y permite estudiar el pasado a partir de su estructura.

Desde que terminó su tesis ha estudiado los lagos de Michoacán, con el objetivo de entender si los episodios de los lagos han sido cíclicos o aleatorios. "Los lagos son como tinas, cualquier cosa que eches cae en el centro, por lo que estudiándolos podríamos entender el impacto del hombre y detallar la actividad volcánica".

En su estudio, introducían una especie de popotes de metal que colectan información de las capas de la Tierra que se encuentran debajo de los lagos, pudiendo ver el paso de los años según la profundidad. En 1998, sacaron un núcleo muy largo del centro del lago de Cuitzeo, que tardaron tres años en analizar en cada una de sus capas.

Encontraron en cada estudio que siempre había una capa donde aumentaba mucho el nivel del lago; sin embargo, afirmaban que se debía a un error en el análisis. La doctora sabía que no era así, pero siguió trabajando la muestra.

"Las algas tienen preferencias, tolerancias y exigencias del lugar en el que se encuentran. Las que encontraron en esa capa que estudiaron tenían preferencia de lugares de aguas profundas; sin embargo, eso no coincidía con el lago Cuitzeo que tiene una profundidad media de tres metros".

La investigadora no entendía por qué fue profundo, porque además esta característica duró poco tiempo porque solo estaba en 10 centímetros de sedimentos, ubicado a 2.85 metros del sustrato del lago, de los 27 metros que analizaron.

En esa capa encontraron un nivel de carbón e hicieron los fechamientos.

¿Burbujas espaciales en el microscopio?

En el microscopio óptico, Isabel Israde vio que había esférulas que siempre se encontraban cuando observaban las diatomeas. Intentaron combinarlas con diferentes sustancias para disiparlas, "pero como son de hierro se ponían más brillantes y hermosas".

Al principio creía que se trataba de burbujas de agua; sin embargo, "se trataba de esférulas, que son cuerpos redondos que tienen una ornamentación en forma de coliflor o estructuras de filigrana, que se dan por un enfriamiento muy rápido".

La doctora señala que ahora saben que se dio por el choque con la atmósfera, "las esférulas chocaron entre sí hasta casi fusionarse, aunque no por completo", afirma que tienen arrugamientos producidos por la fusión del metal y que había otras en forma de gota con la misma ornamentación.

Estas esférulas le dieron evidencia incluso de la dirección del viento cósmico en el momento en que se produjo el choque con la atmósfera. "Las esférulas son una evidencia de materiales cósmicos, también existen como productos industriales, pero se encontraron sepultadas a tres metros del actual lago, por lo que no pudieron haberse sepultado ahí en la historia del ser humano".

Encontraron nanodiamantes

El sesgo que había en las profundidades los hizo estudiar cada tres centímetros el núcleo, este trabajo implicó mucho tiempo porque cada muestra lleva varias semanas, señala la doctora. Cuando terminaron, reunieron los datos de esférulas, análisis de polen, diatomeas, los cambios en los estratos y los enviaron a analizar mediante una técnica que permite detectar nanodiamantes.

"Los diamantes detectados en esa capa de los estratos indican que hubo temperaturas mayores a las emitidas en una explosión volcánica, que se generan con la presión y temperatura a la que se expone el carbón".

Ya tenían todos los proxies, por lo que la doctora pudo comenzar a escribir las conclusiones de su investigación.

Ha sido un meteorito

En ese mismo tiempo, hace 12 mil 800 años se dio una desaparición importante del ser humano, anteriormente se creía que se debió a una infección y que solo había sido en Estados Unidos y Canadá.

Comenzaron a detectar esas coincidencias, del carbón encontrado en las capas de hielo, la desaparición del ser humano, las inconsistencias de profundidad y los nanodiamantes en el lago de Cuitzeo. Se reunió un grupo de investigadores de todo el mundo para encontrar evidencias en diferentes países.

Isabel Israde concluyó que todos estos fenómenos pudieron haber estado causados por un impacto cósmico en muchas partes de la Tierra.

"No fue solo un meteorito, fueron muchos pedazos de uno que se fragmentó afuera del planeta. Hemos encontrado pedazos en Bélgica, Siria, Venezuela, España, Italia, Rusia, entre otros".

Calcularon que cayeron alrededor de 18 millones de toneladas de pedazos de meteorito en el mundo.

"Este meteorito proviene de la nube de Oort, que se encuentra más allá de Neptuno. Se trata de un basurero galáctico sin órbita donde fue a parar todo lo que se produjo en el Big Bang que no se hizo planeta, como vagan sin rumbo pueden generar colapsos".

Señala que lo que habían podido ver los geólogos, son las que se encontraban en la superficie; sin embargo, ella siempre ha pensado que se tienen que observar los lagos.

¿Quedó solo en Cuitzeo?

¿Qué pasa si hay lagos más grandes que pudieron haber funcionado como cápsulas del tiempo, permitiendo que se almacenara en los sedimentos la evidencia hasta que la descubriéramos?, se pregunta la investigadora. Es por ello que está haciendo viajes a diferentes medios sedimentarios, desiertos, lagos, ciénegas, selvas.

Sometió el proyecto al Fondo Conacyt de Ciencia Básica y lo ha obtenido durante tres años consecutivos. Ella sabía que su descubrimiento era importante.

En este trayecto ya han encontrado otras evidencias como la de Cuitzeo, Chapala, Acambay, Valle de Santiago, Tocuila y Chalco. En Tocuila se encontraron nueve mamuts sobre los que se hallaban las capas que arrojaban datos sobre el meteorito.

Para la investigadora, estos hallazgos son importantes por una razón muy simple: "Muestran la fragilidad del ser humano. Cuando ocurre un evento como ese, extermina todo. No nos damos cuenta que somos solo un punto en el espacio".

Esta obra cuyo autor es Agencia Informativa Conacyt está bajo una licencia de Reconocimiento 4.0 Internacional de Creative Commons.

 

 

 

 

Publicado en Tecnologia

El hallazgo tiene implicaciones importantes para la ciencia, consideró Rafael Navarro, del Instituto de Ciencias Nucleares de la UNAM.

La probabilidad de que existan más lagos es alta, pues sólo se ha revisado menos del 10 por ciento de la superficie del polo sur de ese planeta, indicó.

Científicos europeos descubrieron un lago con agua líquida en Marte, hecho que amplía la posibilidad de que actualmente haya vida en el planeta rojo.

Rafael Navarro González, del Instituto de Ciencias Nucleares (ICN) de la UNAM, precisó que el hallazgo se hizo en una región del polo sur marciano, formada por numerosas capas de hielo y polvo, con una profundidad máxima de 1.5 kilómetros, en una zona de 20 kilómetros de diámetro. Ahí se identificó una reflexión especialmente brillante de las ondas sonoras detectadas por el radar MARSIS bajo las capas de los depósitos.

El doctor en Química por la Universidad de Maryland, y quien colabora con la NASA y la Agencia Espacial Europea (ESA) en la exploración de Marte, explicó que para encontrar el cuerpo de agua científicos italianos utilizaron el radar MARSIS (a bordo de la sonda europea Mars Express), que envía pulsos de sonido a la superficie de ese planeta para medir cuánto tardan en regresar a la nave, así como su intensidad; “llevó mucho tiempo revisar los diferentes tipos de reflexión”.

Mars Express monitorea la superficie, pero no puede revisar el planeta en su totalidad. Ha logrado mapear menos del 10 por ciento de la superficie del polo sur; entonces, es muy probable que haya más cuerpos de agua líquida que no han sido explorados, destacó el astrobiólogo.

El hallazgo tiene implicaciones importantes para la ciencia, pues abre la posibilidad de que exista vida en la región, además de que plantea preguntas como ¿cuál sería la fuente de energía que la ha mantenido por todo este tiempo?

Navarro, colaborador de la misión Curiosity de la NASA, indicó que se sabe que la fotosíntesis no puede ocurrir en el área monitoreada debido al grosor y profundidad de la capa de hielo, que no permite la llegada de luz. “La región estaría completamente oscura, y por consiguiente, de haber vida microbiana, sería de tipo quimiosintética, es decir, que toma energía de reacciones químicas, como las bacterias metanógenas”.

Además, la existencia de organismos macroscópicos (como los conocemos) es imposible, pues requieren de mayor cantidad de energía, lo que implica el uso de oxígeno, y en la zona hay condiciones anaeróbicas.

Otra limitante, reflexionó, es la entrada de nutrientes, pues el lago está completamente cerrado; no se podría dar el intercambio de nutrientes y eso restringe la cantidad de biósfera que pudiera existir.

El científico mexicano destacó que otra incógnita es saber qué mantiene al lago en forma líquida. Se estima que la presencia de sales es fundamental en condiciones por debajo de cero grados, pero podría haber fuentes hidrotermales u otro tipo de energía.

La misión InSight de la NASA, que actualmente se dirige al planeta rojo, ofrecerá información importante para saber lo que ocurre, pues lleva consigo un sismógrafo que aportará conocimiento sobre la potencial actividad tectónica.

Sobre la posibilidad de usar el líquido encontrado en futuras misiones espaciales, el universitario destacó que existen protocolos internacionales de protección planetaria para la utilización de recursos en otros planetas, aunque no se descarta la posibilidad de aprovecharla para uso humano u obtención de combustibles.

“Sabemos que hay otros sitios en Marte donde hay agua, por ejemplo, en el área ártica, en donde la misión Phoenix detectó hielo”, añadió. Pero también se podría tener acceso a otras fuentes de agua, y para eso está la misión ExoMars, en la que participa, que intentará capturar líquido de la atmósfera para uso humano.

El lago, acotó, complementa el reciente anuncio de agua en la vida pasada del planeta rojo, descubrimiento realizado por el robot Curiosity, lo que aumenta las expectativas de trabajo.

Pero “el gran hallazgo será tener evidencia de biosfera en Marte, porque cambiará la biología terrícola y nos llevará a una biología universal”.

Finalmente, estimó necesario enviar más misiones de exploración a los polos, tarea difícil por la cantidad de luz y energía que reciben los equipos. “Pero ahora se sabe que en esas áreas hay más posibilidades de encontrar vida, respecto a las zonas ecuatoriales, en donde actualmente se encuentra Curiosity”.

—oOo—

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

 

www.unamglobal.unam.mx

Publicado en Tecnologia

Ubican entre galaxias la mitad de la materia ordinaria del Universo, de la que está hecho todo lo que vemos, incluidos los seres vivos.
En el estudio participaron 21 científicos de seis países, entre ellos Yair Krongold Herrera, integrante del Instituto de Astronomía de esta casa de estudios.
El hallazgo, publicado en la revista Nature, avanzará nuevas investigaciones para entender la formación de las galaxias y su estructura actual.

Hasta ahora estaba perdida y su ubicación era una pregunta abierta para la astronomía. Pero después de 12 años de investigación, un grupo internacional formado por 21 científicos de seis países encontró entre las galaxias, en forma de filamentos, la mitad de la llamada “materia ordinaria” del Universo, aquella con la que está hecho todo lo que vemos, incluidos los seres vivos.

“No sabíamos dónde estaba la mitad de la materia ordinaria, no se podía haber desintegrado y tendría que estar en algún lado”. El estudio fortalece la teoría de la Gran Explosión o Big Bang, que predice cuánta materia ordinaria debió formarse durante el surgimiento del Universo, indicó Yair Krongold Herrera del Instituto de Astronomía (IA) de la UNAM y quien participó en este hallazgo científico, publicado recientemente en la revista Nature.

De acuerdo con cálculos recientes, la materia ordinaria es apenas el 4% de la masa del Universo. El 23% está formado por materia oscura y el 73% por energía oscura, ambas aún indetectables. Ubicar el 50% de materia ordinaria, que está hecha de átomos, confirma experimentalmente hipótesis teóricas y ayuda a los astrónomos a tener una pequeña pieza del rompecabezas que describe la estructura cósmica.

Para detectar la mitad de la materia ordinaria en el medio intergaláctico, los astrónomos recurrieron a los telescopios espaciales XMM-Newton, de la Agencia Espacial Europea (ESA), y Hubble, proyecto conjunto de la Agencia Espacial de Estados Unidos (NASA) y la ESA, así como al terrestre Gran Telescopio Canarias, que opera un consorcio internacional bajo el liderazgo del Instituto de Astrofísica de Canarias en España.

Según el experto del IA de la UNAM, hay coincidencia, al comparar la cantidad de materia ordinaria predicha por el Big Bang con la información inferida de la luz remanente del Universo muy joven (conocida como radiación cósmica de fondo); también la hay con la cantidad de materia observada en el Universo distante. Pero cuando se trata de distancias más cercanas a nosotros, se pierde paulatinamente evidencia de esta materia.

Además de Yair Krongold, por parte de México participaron Divakara Mayya y Daniel Rosa González, ambos del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE).

Dos filamentos

La estructura del Universo es una telaraña cósmica formada por muchos hilos de gas muy caliente que se entremezclan y a veces se fusionan para crear galaxias. “Lo que descubrimos fueron dos filamentos, en donde se veía material muy caliente y tenue”, explicó.

“Se detectaron en rayos X y en ultravioleta”. A estas dos “miradas” desde el espacio, sumaron una tercera desde la Tierra, con el Gran Telescopio Canarias. Sin embargo, el estudio tiene una sola línea de visión.

“Es importante avanzar hacia otros objetos porque así podremos entender además cuál es el estado físico de esta materia. Eso nos da una pista sobre cómo han sido los procesos de formación de las galaxias”.

El siguiente paso, adelantó, es observar (con el método ya diseñado y probado) hacia otros lados, y a través de eso podremos entender mejor cómo se han formado las galaxias, cómo han evolucionado y su crecimiento desde el big bang.

—oOo—

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

www.unamglobal.unam.mx

 

 

Publicado en Tecnologia

Marte es hermoso y desconocido.

La Agencia Espacial Europea (ESA por sus siglas en inglés) presentó una sorprendente imagen captada por la Mars Express, la sonda de exploración que sobrevuela Marte.

La imagen muestra una tormenta de arena que se arremolina de manera temible en casi toda la región del polo norte marciano. El impresionante fenómeno fue captado gracias a la High Resolution Stereo Camera, una increíblemente potente cámara de alta resolución que viene equipada en la Mars Express.

Los astrónomos del Centro Aeroespacial Alemán, quienes administran el sistema de la cámara, aseguran que la panorámica se tomó el pasado 3 de abril.

La región que cubre la tormenta de arena en la imagen se conoce como Utopía Planitia, una de las zonas que más a estudiado Mars Express desde su arribo a Marte.

La tormenta de arena es uno de los muchos eventos a pequeña escala que tuvieron lugar en Marte en los últimos meses. Y fue un antecedente de una tormenta similar, pero que cubrió todo el planeta, tan sólo unos meses después.

En realidad, las tormentas de arena son muy comunes en Marte, incluso Opportunity, el rover explorador de la NASA, ha tenido que hibernar varias veces para esperar que se detenga alguno de estos fenómenos.
 

FUENTE Science News

Publicado en Ciencia

Creador de tecnologías propias desarrolladas en la Universidad Nacional, Jorge Prado Molina, académico del Instituto de Geografía (IGg) de la UNAM, patentó dos sistemas de simulación satelital y un estabilizador para satélites en órbita.

Sus proyectos son útiles para el sector aeroespacial, en el que la Universidad Nacional tiene una larga trayectoria, y hoy dedica esfuerzos para desarrollar nanosatélites de uno a 10 kilogramos de peso.

Los satélites espaciales se mantienen en su órbita, y en ella se mueven libremente y rotan en todas direcciones. Para orientarlos y controlarlos desde la Tierra, o para que efectúen esta tarea de manera autónoma, Prado Molina, investigador del Laboratorio de Análisis Geoespacial del IGg, ha diseñado prototipos originales de simuladores que imitan, en laboratorio, el ambiente sin fricción característico del espacio exterior.

Los complementa con sensores que determinan la orientación del satélite, actuadores que cambian su posición, y controladores que envían y reciben información entre el artefacto en el espacio y una estación terrena.

El sistema de simulación tiene un movimiento en tres ejes, así que la plataforma se puede mover como ocurre en el espacio, donde los objetos flotan libremente y se desplazan en tres grados de libertad, aunque se debe hacer una transformación matemática con respecto a otro sistema de referencia fijo en la Tierra para lograr obtener seis grados de libertad. Así, se simula en el laboratorio el movimiento normal de cualquier objeto que orbita el planeta.

 

Método estabilizador de satélites

 

Cuando tenemos un satélite moviéndose en una órbita recibe agentes externos, como el viento solar. Si el centro de masa de este objeto no está en el centro geométrico, hay una pequeña fuerza que lo hace girar en alguno de sus ejes.

“La idea de este sistema es que, con unas masas internas, llevemos el centro de masa al centro geométrico y así reducir esas fuerzas externas que causan un movimiento indeseado que cambia la orientación del satélite, pues queremos que se mantenga totalmente estabilizado apuntando hacia la Tierra, y que esa estabilidad se mantenga en toda la órbita”, explicó.

“Esto no se había hecho con satélites tan pequeños, de uno a 10 kilogramos, que son con los que trabajamos”.

A partir de tres patentes, la UNAM hace promoción para lograr el interés de alguna empresa que quiera comercializar estos equipos. “Lo importante fue la idea. En otros países los investigadores hacen las empresas de alta tecnología, y eso nos hace falta en México para que no seamos tan dependientes del exterior”.

Finalmente, Prado Molina consideró que en nuestro país no tenemos una cultura del patentamiento, por lo que exhortó a los investigadores a generar tecnologías propias y hacer dicho proceso.

Desde 1985, el doctor en ingeniería ha diseñado diversos equipos aeroespaciales. Con uno de sus sistemas de simulación obtuvo el quinto lugar de la más reciente edición del Programa para el Fomento al Patentamiento y la Innovación (PROFOPI) de esta casa de estudios.

 

 

Publicado en Tecnologia

Ciudad de México. La materia bariónica o comúnmente conocida como la “materia ordinaria” perdida del universo —la materia de la que se compone todo lo existente— fue encontrada recientemente en el medio intergaláctico con ayuda de los telescopios espaciales XMM-Newton y Hubble, y con el Gran Telescopio Canarias en la Tierra, a través de las investigaciones de un grupo internacional de astrónomos, entre los que se incluyen mexicanos.

El doctor Yair Krongold Herrera, investigador del Instituto de Astronomía (IA) de la Universidad Nacional Autónoma de México (UNAM), y los doctores Divakara Mayya y Daniel Rosa, del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), forman parte de este grupo de especialistas que tras doce años de investigación han encontrado las evidencias que ayudan a constatar la teoría de la llamada Gran Explosión o Big Bang.

En entrevista para la Agencia Informativa Conacyt, Yair Krongold explicó la importancia de este hallazgo en la conformación del universo y en la manera de localizar la materia ordinaria tenue. El hallazgo valió la reciente publicación en la revista Nature bajo el título Observations of the missing baryons in the warm–hot intergalactic medium, publicado en el reciente ejemplar de junio de 2018.

Materia casi invisible

 

De acuerdo con el especialista, si se toma la cantidad de materia ordinaria del universo que predice la teoría del Big Bang con la cantidad de materia que se mide a través de la radiación cósmica de fondo —la luz más antigua que vemos del universo— y se compara con lo que hoy se observa en el universo cercano, hay aproximadamente cincuenta por ciento de materia perdida.

“Existe coincidencia al comparar la cantidad de materia ordinaria predicha por el Big Bang con la información inferida de la luz remanente del universo muy joven —conocida como radiación cósmica de fondo—, como también la hay con la cantidad de materia observada en el universo distante. Sin embargo, cuando se trata de distancias más cercanas a nosotros, se pierde paulatinamente evidencia de esta materia”.

Mencionó que esa cantidad de materia ordinaria que había antes comienza a perderse y ya no se sabe dónde está, aunque en términos generales la cantidad de materia que hay en las galaxias tan solo es la quinta parte del total, y el resto está en el medio intergaláctico.

Debido a sus altas temperaturas, este material bariónico se presenta de manera muy tenue y en forma de filamentos en el espacio intergaláctico, por lo que es difícil de detectar y sobre todo cuantificar.

Este material emite muy poca luz propia, lo que hace más complicada su ubicación al no poder observarse directamente; por esto es imperativo ver la sombra de dicha materia, y para lograrlo se necesita de la búsqueda de objetos distantes en el universo como los cuásares, que proyectan un gran brillo, así se aprecia la sombra de la materia tenue en la luz que llega de ellos.

“En los cuásares hay un agujero negro supermasivo que se come una gran cantidad de material y que irradia una gran cantidad de luz que sale en dirección hacia nosotros”, explicó Yair Krongold.

 

La idea de este trabajo de doce años de duración fue utilizar rayos X en uno de estos cuásares y ver la sombra de la materia bariónica. Debido a su tenuidad, se necesitó de una gran observación del telescopio espacial de rayos X XMM-Newton, propiedad de la Agencia Espacial Europea (ESA, por sus siglas en inglés).

Se apuntó el telescopio en dirección del cuásar sin moverse hacia otros objetos durante 1.8 millones de segundos, lo que equivale a dieciocho días completos. Esta es la observación más larga, por mucho, de un objeto por parte de un telescopio espacial de rayos X.

Observando el medio intergaláctico

El resultado derivado de la observación del XMM-Newton fue que efectivamente se pudo ver la sombra casi imperceptible del material intergaláctico en los rayos X y que confirmaron con el uso de datos ultravioleta del telescopio espacial Hubble, donde también encontraron una sombra extremadamente tenue de este mismo material.

“En el telescopio espacial Hubble se ve la sombra de átomos de hidrógeno y en la observación con rayos X se ve la sombra de átomos de oxígeno. Necesitábamos los datos de ambos telescopios para confirmar que se trataba del mismo resultado y fue ahí donde lo encontramos”.

Asimismo utilizaron el tiempo mexicano del Gran Telescopio Canarias —el telescopio óptico más grande del mundo— para observar todas las galaxias que había entre la Tierra y el cuásar estudiado, pues la teoría que habla de la formación de las galaxias y evolución del universo menciona que esta materia ultra tenue tiene que estar alrededor de las concentraciones de galaxias.

Estas pueden estudiarse en luz óptica desde dicho telescopio terrestre y observaron que en los lugares donde se encuentran estos filamentos de material bariónico existen concentraciones de galaxias.

“Quiere decir que nos encontramos en el camino correcto, tenemos tres piezas de evidencia que nos dicen que estos filamentos muy tenues confirman la teoría: la sombra directa de los rayos X, la sombra de los datos ultravioleta y las concentraciones de galaxias justo en la misma distancia y en el mismo lugar donde está dicho material evidenciado por estas sombras, lo que demuestra que estamos viendo el material tenue intergaláctico”, subrayó Yair Krongold.

Búsqueda más allá

 

Con estas evidencias a la mano, los investigadores compararon si el número de filamentos que observaban en la distancia que hay entre la Tierra y el cuásar coincidía con la cantidad de filamentos que predecía la teoría.

“En una distancia similar a la que hay de aquí al cuásar esperábamos dos filamentos, y justamente detectamos dos filamentos, entonces coincide en ese sentido la teoría con lo que encontramos”.

Con esta detección y estudiando el material que se encuentra en los filamentos, los astrónomos pueden medir sus propiedades como temperatura, densidad y, sobre todo, la masa de materia bariónica que hay en ellos.

De acuerdo con el investigador, si este trabajo se extrapola al universo, estos mismos filamentos se encontrarán en todas las demás vertientes fuera del punto de estudio entre el telescopio XMM-Newton y el cuásar objetivo, por lo que concluyó que la materia perdida del universo ya ha sido encontrada.

“Como nos decía la teoría, está en este gas muy tenue y muy caliente, en estos filamentos cósmicos alrededor de las galaxias, por lo que este hallazgo es muy importante porque ya encontramos esa materia perdida de la que no podíamos dar cuenta en el universo en el cual estamos, y que valida nuestra creencia de proceso de formación de galaxias a través de estas evidencias que lo confirman”.

 

 

 

Publicado en Tecnologia

Ciudad de México.  Joel Sánchez Bermúdez, investigador mexicano del Observatorio Europeo Austral (ESO, por sus siglas en inglés), ganó junto con su equipo, conformado por los españoles Antxón Alberdi y Rainer Schödel, el premio a la reconstrucción de una imagen astronómica más bella y precisa. Dicho galardón fue otorgado en el Congreso de la Society of Photo-Optical Instrumentation Engineers (SPIE).

El Interferometric Imaging Beauty Contest es un concurso que tiene el objetivo de poner a prueba el software y las capacidades metodológicas para la reconstrucción de imágenes interferométricas en el espectro infrarrojo. La reconstrucción de este tipo de imágenes es fundamental en la astronomía moderna para entender los fenómenos que ocurren todos los días en el universo.

La dinámica del concurso consiste en que los equipos expertos y participantes de todo el mundo reciben una serie de datos obtenidos a partir de simulaciones que hacen los organizadores según parámetros de los instrumentos y telescopios. A partir de ahí, los equipos procesan los datos interferométricos y crean una imagen; la más bella y precisa según los datos es elegida como la ganadora.

La imagen ganadora recrea una estrella central con un disco de polvo elongado y un brillo asimétrico, con un planeta en formación. Este tipo de estrellas jóvenes es común en el universo y se piensa que nuestro Sol y sistema solar tuvo un proceso de formación similar.

“Este concurso sirve como referencia para establecer los límites y alcances de la tecnología que existe en el campo de la interferometría infrarroja”, aclaró Joel Sánchez Bermúdez en entrevista con la Agencia Informativa Conacyt.

Además de la imagen, se tienen que entregar los parámetros físicos del objeto observado, por lo que se necesitó a expertos de las universidades de Cambridge, Lyon y Leuven. Los resultados fueron presentados durante el Congreso de la SPIE el 14 de junio en Austin, Texas.

El concurso se lleva a cabo de forma bienal desde hace 16 años y en ediciones anteriores los equipos e investigadores han reconstruido a partir de datos interferométricos imágenes de estrellas, cúmulos de estrellas, discos alrededor de estrellas y planetas.

La interferometría astronómica es una técnica observacional que ha permitido a los astrónomos observar con el mayor detalle posible las estrellas y galaxias. Esta técnica permite combinar dos o más telescopios al mismo tiempo para observar un objeto astronómico. La resolución alcanzada es proporcional a la separación entre los distintos telescopios combinados.

“Para un interferómetro como el Very Large Telescope Interferometer, localizado en el desierto de Atacama en Chile, el nivel de detalle alcanzado equivale a ver una moneda de cinco pesos en la superficie de la Luna”, explicó Sánchez Bermúdez.

Esta es la segunda ocasión en que Joel Sánchez Bermúdez resulta ganador de este concurso, por lo que se ha colocado como uno de los astrónomos reconstructores más reconocidos a nivel mundial por la calidad y precisión de su trabajo. La primera vez fue en 2014 y aún era estudiante de doctorado.

En esta edición del concurso, los especialistas a nivel internacional tuvieron que reconstruir a partir de datos interferométricos una estrella en formación con un disco de polvo y un planeta. Este es un fenómeno similar a como piensan los astrónomos ­que se formó el sistema solar. Los datos con que trabajaron los concursantes fueron obtenidos de dos de los interferómetros más importantes del mundo, el Center for High Angular Resolution Astronomy (CHARA) en Estados Unidos y el Very Large Telescope Interferometer en Chile.

La línea de investigación del doctor Joel Sánchez Bermúdez gira alrededor del análisis de datos interferométricos para el estudio de estrellas de altas masas, que son las estrellas que producen prácticamente todos los ingredientes de los que está hecho el universo, por lo que adquieren una relevancia particular para estudiar todos los fenómenos astronómicos.

“El estudio de este tipo de estrellas con interferometría es importante para entender la evolución de las mismas y su efecto en la evolución química de las galaxias”, concluyó.  

 

 

Publicado en Tecnologia

Ciudad de México. (Agencia Informativa Conacyt).- El investigador mexicano Juan Pablo Torres Papaqui, de la Universidad de Guanajuato, busca determinar el radio de influencia de los núcleos activos de galaxias (NAG) para poder entender la coevolución entre estos y las galaxias que los hospedan.

Esta investigación fue una colaboración con el proyecto Calar Alto Legacy Integral Field Spectroscopy Area Survey(CALIFA) y su aporte consistió en generar nuevos conocimientos sobre la importancia de los NAG junto con los demás fenómenos que ocurren en una galaxia.

“La calidad de los datos de CALIFA nos brinda un panorama mucho más completo para comprender las galaxias”, agregó en entrevista con la Agencia Informativa Conacyt.

De acuerdo con el paradigma estandarizado, las galaxias que hospedan un NAG poseen un agujero negro supermasivo en su centro, con base en esto el doctor Torres Papaqui desarrolló el trabajo de investigación.

El doctor comentó que entre los agujeros negros supermasivos que se encuentran en los centros de las galaxias, el núcleo activo y la formación estelar propia de la galaxia existe una pequeña batalla por las reservas de gas y polvo.

Por ello, indicó que existe la hipótesis acerca de una posible conexión entre la formación estelar y el núcleo activo de las galaxias, por lo que influiría en el proceso evolutivo; conocer esto abonaría a comprender las fases de evolución de este tipo de galaxias.

Torres Papaqui agregó que todavía hay un fuerte debate dentro de la astronomía con respecto a los núcleos activos de las galaxias ya que todavía no se sabe a ciencia cierta los elementos que los producen. Sin embargo, los científicos saben que se da en una etapa primaria de la formación de la galaxia.

Aunque todavía no hay una teoría sólida al respecto, el catedrático de la Universidad de Guanajuato explicó que la versión más aceptada es que el núcleo activo surge a partir de la fusión de protogalaxias.

“Entre más rápido se desarrolle la tecnología, más probabilidades hay de conocer con más detalle el proceso de evolución de las galaxias y de su relación con los núcleos activos”, agregó.

Como parte del trabajo de su equipo de investigación, estudian el crecimiento de los bulbos galácticos que en la mayoría de las galaxias crecen paralelamente con el agujero negro supermasivo que se encuentra en el centro, por lo que conocer más al respecto puede ser una de las claves para entender la evolución de las galaxias.

También expresó que están investigando las intensidades de la formación estelar de las galaxias y cómo se relaciona con la perturbación gravitacional ante la presencia de galaxias cercanas; ahora con datos recientes, el grupo de investigación del doctor Torres Papaqui ha logrado ubicar que en las regiones centrales de las galaxias está ocurriendo el nacimiento de nuevas regiones de formación estelar por dichas perturbaciones.

Estos indicadores afectan la evolución de las galaxias porque se acelera la formación estelar y tiene un efecto que va desencadenando más fenómenos astronómicos, aseguró el investigador de la Universidad de Guanajuato.

La astronomía también es divertida

En la Universidad de Guanajuato, además de la investigación de alta especialidad, realizan actividades de divulgación científica bajo una premisa: se aprende mejor jugando.

Bajo el nombre de Astronomía Divertida, varios profesores y estudiantes de posgrado de la universidad dan conferencias y pláticas orientadas a público infantil, con el objetivo de que se interesen por la ciencia.

“También hacemos talleres lúdicos, observación con telescopios y tenemos un observatorio móvil que usamos para llegar a comunidades de difícil acceso”, dijo el divulgador.

Las observaciones las hacen con seis telescopios de ocho pulgadas portátiles, los cuales sirven para acercar la astronomía a jóvenes y niños que no tienen los medios ni los recursos para participar en actividades de divulgación en la ciudad.

Para el investigador Juan Pablo Torres Papaqui, la astronomía tiene una ventaja para divulgarse porque es muy atractiva y atrae al público infantil.

 

 

 

 

 

 

Publicado en Tecnologia
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.