Fue el fundador del Instituto Nacional de Astrofísica, Óptica y Electrónica.

Google nos sorprendió esta mañana con un bonito Doodle en honor a Guillermo Haro Barraza, el fundador del Instituto Nacional de Astrofísica, Óptica y Electrónica.

Haro nació en México en 1913, y le tocó crecer en un México convulso por la revolución mexicana. En su juventud decidió estudiar filosofía en la UNAM, y poco después se interesó por la astronomía. Su dedicación le permitió entrar a trabajar en 1943 como asistente del recién fundado Observatorio Astrofísico Nacional de Tonantzintla. Su amor por las estrellas lo llevó a Estados Unidos, donde logró un puesto importante en el Harvard College Observatory.

Guillermo haro y su esposa, Elena Poniatowska.

Entre sus mayores contribuciones a la ciencia estuvo el descubrimiento de un tipo de nebulosas planetarias llamadas objetos Herbig-Haro. También descubrió estrellas fulgurantes (estrellas brillantes rojas y azules) en la región de la constelación de Orión. Estas contribuciones llevaron a Haro a convertirse en el primer mexicano elegido para formar parte de la Royal Astronomical Society, en 1959. En Estados Unidos fue vicepresidente de la American Astronomical Society durante la primera mitad de los años sesenta. Pero regresó a México como director del Instituto de Astronomía de la UNAM, cargo que ocupó hasta 1968, cuando renunció al cargo por los problemas políticos que se vivían en la capital, y siguiendo el consejo de su esposa, la escritora Elena Poniatowska.

El legado de Haro perdura hasta el día de hoy a través del Instituto Nacional de Astrofísica, Óptica y Electrónica, que fundó para apoyar a los estudiantes de ciencias en sus carreras profesionales. El instituto también administra un observatorio que lleva su nombre en Sonora. Guillermo Haro murió en la Ciudad de México el 27 de abril de 1988, a los 75 años. La mitad de sus cenizas se enterraron en la Rotonda de las Personas Ilustres el 6 de agosto de 1994, y el resto sigue en posesión de la familia Haro-Poniatowska.
 

FUENTE: Google Blog

Publicado en Ciencia
Sábado, 17 Marzo 2018 05:46

Stephen Hawking: una mente sin límites

El físico británico profundizó en el estudio de los hoyos negros, propuso una visión integral de la física y planteó la existencia de la llamada “radiación de Hawking”, recordó Saúl Ramos, del Instituto de Física de la UNAM

Su persona es la prueba de que la conciencia trasciende a la realidad, dijo Vladimir Ávila, del Instituto de Astronomía.

Una de las mentes científicas más luminosas del siglo XX deja a la humanidad un legado que viaja generoso de la exploración teórica de los hoyos negros y la singularidad del espacio-tiempo, a cuestiones más mundanas, como la divulgación de la ciencia y la demostración de que la búsqueda del conocimiento rompe cualquier barrera cuando su motor de vida es la inteligencia.

“Stephen Hawking es la prueba de que la conciencia trasciende a la realidad, que la mente está sobre la materia. Su determinación, tenacidad y persistencia, pero sobre todo su amor a la vida, hicieron que su brillante mente no tuviera límites”, resumió Vladimir Ávila Reese, investigador del Instituto de Astronomía (IA) de la UNAM.

Físico teórico, astrofísico, cosmólogo y divulgador científico británico, Stephen Hawking (1942-2018) nació en Oxford y desarrolló su carrera académica en la Universidad de Cambridge. Desde allí despegó como un eminente profesor de física para convertirse en una celebridad universal.

Desde los 22 años padeció esclerosis lateral amiotrófica, una enfermedad que fue limitando cada vez más sus movimientos, pero que nunca redujo su trabajo científico, pese a que el diagnóstico predijo que viviría sólo hasta los 24 años.

A los 32, fue una de las personas más jóvenes en ser aceptadas como miembro de la Royal Society, la asociación científica más antigua del planeta, fundada en 1660.

Agujeros negros

Como un “gran generador de ideas” calificó a Hawking el astrofísico José Franco, también investigador del Instituto de Astronomía y coordinador del Foro Consultivo Científico y Tecnológico (FCCyT). Recordó que, desde fines de la década de los 60, Hawking desarrolló trabajos que ayudaron a entender cómo funcionaba la física de los agujeros negros.

“En aquella época los agujeros negros eran una curiosidad. La comunidad científica no creía en ellos y, de hecho, la evidencia de que existían en los centros de las galaxias se comenzó a dilucidar hasta la década de los años 90. El trabajo de Hawking fue pionero en esta área y contribuyó a construir el mejor cuerpo de ideas sobre las características de los agujeros negros y del inicio de nuestro Universo”, relató.

Radiación de Hawking

Una de las principales contribuciones del físico británico es el hallazgo de la llamada “radiación de Hawking”. Él consideró que la mecánica cuántica debería ser considerada al estudiar los agujeros negros, algo que había sido dejado de lado durante los primeros años de la Relatividad General de Einstein, una teoría clásica y divorciada de la mecánica cuántica, el otro gran hallazgo del siglo XX.

“A él se le ocurrió que no debería ser así porque en la frontera de los agujeros negros, en el horizonte de eventos –ese sitio donde nada escapa de la atracción del agujero negro, ni siquiera la luz– puede haber partículas de materia y antimateria que escapan unas hacia adentro y otras hacia afuera del agujero. Las partículas que pueden escapar libremente son la radiación de Hawking”, explicó Saúl Noé Ramos Sánchez, investigador del Instituto de Física (IF) de esta casa de estudios.

Vladimir Ávila señaló que el británico encontró que la atmósfera de los hoyos negros puede evaporarse generando radiación gamma, bautizada luego como radiación Hawking. Mostró que los hipotéticos hoyos negros primigenios se desintegrarían por completo en radiación gamma.

Hawking se dio cuenta de que en el centro de los agujeros negros debía existir algo que matemáticamente se conoce como singularidad, es decir, una cantidad enorme de materia y energía concentrada en un solo punto. “Es inevitable que en toda cosmología existan estas singularidades. Deben existir particularmente en el pasado muy remoto, cuando el Universo estaba concentrado en una singularidad”, opinó Ramos.

Otra aportación que destacó Ramos fue la idea de Hawking de que la física no se puede seccionar (en clásica, cuántica o termodinámica). “Pensaba que la física es una misma, y así había que pensarla”.

Se fue sin el Premio Nobel

El célebre físico no recibió el Premio Nobel de Física porque no se ha podido medir la radiación de Hawking. “No tenemos un hoyo negro aquí en un laboratorio, ni podemos ir a uno real”, acotó.

A Hawking y otros colegas se les ocurrió una idea para medir desde la Tierra la radiación que lleva su nombre. A través del Gran Colisionador de Hadrones se pueden medir partículas elementales y crear mini agujeros negros.

“Cuando surja en ese colisionador una enorme cantidad de radiación con muchas partículas esféricamente simétricas yendo para todas partes con la misma densidad, entonces habrán encontrado la radiación de Hawking”, expuso Ramos.

Con un talento extraordinario para la divulgación de la ciencia, Hawking pensó en una cosmología para todos, para que el público no especializado tuviera una noción de la historia del Universo.

Con ideas muy claras y gran capacidad de síntesis, en 1988 escribió el libro de divulgación científica Breve historia del tiempo, del Big Bang a los agujeros negros. Desde que fue publicado, su texto más conocido se mantuvo cuatro años y medio  entre los 50 más vendidos del Reino Unido, de acuerdo con las listas del periódico londinense The Sunday Times.

En 2005, con Leonard Mlodinow, publicó Brevísima historia del tiempo, en donde trató de explicar de la forma más sencilla posible la historia del Universo. “Conciencia y ciencia unidas en él lo llevaron a formularse cuestiones fundamentales de nuestro entendimiento de los hoyos negros, del origen del espacio-tiempo, de la evolución del Universo y otras. A pesar de la gran limitación corporal que sufría, pudo hacer ciencia y divulgarla, para ser un pensador icónico de nuestros tiempos”, concluyó Ávila.

Conoce más de la Universidad Nacional, visita:

www.dgcs.unam.mx

www.unamglobal.unam.mx

 

 

 

Publicado en Ciencia

• Cada 15 minutos obtiene imágenes del Hemisferio Occidental completo y se puede dar seguimiento regional por minuto a huracanes, frentes fríos e incendios forestales, lo que lo convierte en pieza clave para la prevención de riesgos

• Recibe información de ocho satélites de órbita polar y de última generación, como el GOES 16, informó Manuel Suárez, director del Instituto de Geografía

• Su antena es única en el país y en una universidad de América Latina, expuso la responsable de las estaciones de recepción de imágenes satelitales, Gabriela Gómez

• Se podrá monitorear el cumplimiento de compromisos de la Agenda 2030 sobre el cambio climático, señaló el coordinador del laboratorio, Jorge Prado.

Con tecnología de vanguardia, la UNAM opera el Laboratorio Nacional de Observación de la Tierra (LANOT), que recibe imágenes e información casi de manera inmediata de ocho satélites, con lo que se pueden dar alertas tempranas y prevenir riesgos por incendios, tormentas severas y huracanes, entre otros.

Manuel Suárez Lastra, director del Instituto de Geografía (IGg) –en donde se ubica el LANOT–, explicó que diariamente reciben 2.7 teras de información, que se distribuyen en tiempo real a través de un geoportal, una página de Internet, y se da acceso directo a sus servidores a dependencias que requieren de estos datos.

Cada 15 minutos, agregó, se obtienen imágenes del Hemisferio Occidental completo; cada cinco minutos hay nueva información de toda Norteamérica y se puede dar seguimiento regional por minuto a huracanes, frentes fríos, incendios forestales, detección de tormentas eléctricas y eventos astronómicos como los eclipses o la actividad solar.

Además, recibe información del Solar Ultraviolet Imager, un telescopio que capta imágenes del Sol, lo que permite la emisión de alertas tempranas ante posibles impactos en la magnetósfera que provoquen interrupciones y/o daños en los sistemas de energía, comunicación y sistemas de navegación.

“Es factible observar los procesos de los mares, la atmósfera, las diferentes cubiertas vegetales y sus cambios en el corto, mediano y largo plazos; además, monitorear incendios, la actividad eruptiva, accidentes industriales de gran tamaño. Con esto es posible disminuir riesgos y prevenir desastres, incidiendo así en temas de seguridad nacional”, destacó.

El laboratorio, acotó, forma parte de un consorcio conformado por el IGg, el INEGI, la Secretaría de Marina, la Universidad Autónoma del Estado de México, el Instituto Mexicano de Tecnología del Agua, el Centro Nacional para la Prevención de Desastres y el Servicio Meteorológico Nacional, entre otras instancias.

Entre sus metas, añadió, está ampliar su capacidad de almacenamiento de información, tener acercamiento con la Agencia Espacial Europea para conseguir más datos y establecer mayor vinculación con otros laboratorios nacionales como el de Ciencias de la Sostenibilidad (LANCIS), de Buques Oceanográficos y el de Clima Espacial (LANCE).

En su oportunidad, la responsable de Estaciones de Recepción de Imágenes Satelitales del LANOT, Gabriela Gómez, expuso que se reciben datos de siete satélites de órbita polar, del sistema GEONETCast, así como de satélites de última generación GOES 16.

La UNAM, afirmó, es la única institución en el país con una antena para recibir información de este último satélite y la única universidad en América Latina con esta infraestructura.

En tanto, el coordinador del LANOT, Jorge Prado, indicó que éste forman parte de la Red Académica del Comité de Expertos de la Organización de las Naciones Unidas sobre el Manejo de Información Geoespacial Global, en la cual pueden brindar opiniones a los países sobre el uso de estos datos para atender asuntos de seguridad nacional y crecimiento económico.

El laboratorio, añadió, ayudará a vigilar el avance de las naciones en los compromisos de la Agenda 2030 en temas como el cambio climático y la reducción en la huella de carbono. “Se puede vigilar a partir de monitorear los cambios en la vegetación y usos de suelo. También podemos incidir en la seguridad alimentaria al evaluar cómo serán las cosechas anuales”.

Finalmente, Suárez Lastra aseguró que el LANOT, además de proporcionar información para la investigación científica y desarrollos tecnológicos, será un espacio para la docencia, pues en su labor se ha incorporado a becarios y estudiantes.

 

 

Publicado en Tecnologia

Aquello que observan los astrónomos como galaxias, estrellas, planetas o gas cósmico está compuesto principalmente de materia formada por protones, neutrones y electrones, la cual emite o absorbe radiación electromagnética y así puede ser detectada con telescopios.

Pero todo apunta a que en el cosmos hay también una forma de materia invisible, misma que parece ser además 5 o 6 veces más abundante que la ordinaria y perceptible. Históricamente se conoce a este misterioso componente como materia oscura, expone Vladimir Ávila Reese, investigador del Instituto de Astronomía de la UNAM.

¿Qué es la materia oscura? Es un tipo de materia que no emite ni absorbe radiación electromagnética pero que sí genera gravedad cuando se acumula a escalas astronómicas. Por su acción gravitacional sobre los objetos luminosos y el gas es que los astrónomos dan cuenta de ella.

Esta materia, enfatiza, es imprescindible en nuestras teorías de formación de galaxias. Sin ella, no tendríamos las semillas para formar galaxias... y todo lo que hay dentro de ella, incluyéndonos.

Origen de las galaxias

Las fluctuaciones cuánticas en el albor del Universo dan origen a fluctuaciones en la densidad de masa. Es fácil mostrar que estas fluctuaciones, si están hechas sólo de materia ordinaria, se borran en el Universo temprano cuando la radiación era muy caliente. No obstante, si las fluctuaciones son de materia oscura, ellas sobreviven, pues la materia oscura no interactúa con la radiación electromagnética.

Las fluctuaciones de materia oscura se hacen cada vez más densas por su gravedad hasta colapsar y formar estructuras autogravitantes que capturan a la materia ordinaria. De esta materia ordinaria, confinada en el centro de las estructuras oscuras, nacen las galaxias.

La distribución a gran escala que se calcula para la materia oscura en simulaciones en supercomputadoras explica también muy bien porqué las galaxias están distribuidas como se observa: en una compleja red de filamentos, nodos y huecos. Si lo vemos de manera tridimensional, las galaxias conforman una estructura tipo esponja. Y esto es porque ellas simplemente siguen el molde gravitacional de la materia oscura.

Galaxias desordenadas

Fue el astrónomo Fritz Zwicky, quien se dio a la tarea de observar cómo se mueven las galaxias en el cúmulo de galaxias Coma, una estructura gigantesca con más de mil galaxias.  Él encontró que las galaxias en Coma se mueven desordenadamente y a grandes velocidades.

Para mantener en equilibrio a las agitadas galaxias, debería haber un campo gravitacional muy fuerte. Zwicky notó que la masa que suman todas las galaxias observadas del cúmulo es mucho menor a lo necesario para producir este campo gravitacional. Eso lo llevó a postular que en el cúmulo hay mucha más masa que no estamos viendo, la materia oscura.

En la década de los 70, Vera Rubin y otros astrónomos, midieron la velocidad con que giran galaxias espirales como la nuestra. Encontraron que si no hay un campo gravitacional muy fuerte, las galaxias tendrían que estar desbaratándose por su enorme velocidad de rotación. Nuevamente, para explicar por qué las galaxias no se desbaratan, se propuso que están inmersas en enormes estructuras de materia oscura que las confina.

¿De qué está hecha la materia oscura?

Las propuestas más aceptadas para explicar la materia oscura vienen de la física de partículas. Hay muchas partículas elementales que se predicen y que tienen las propiedades adecuadas para ser la materia invisible que los astrónomos y cosmólogos requieren. El reto es detectar directa o indirectamente a estas elusivas partículas. Para ello hay sofisticados experimentos en curso.

Mientras tanto, el doctor Vladimir Ávila Reese y sus colegas exploran, con modelos y simulaciones en supercomputadoras, cómo son las galaxias y sus sistemas con uno u otro tipo de partícula de materia oscura propuesta. Los resultados que sean más consistentes con las observaciones astronómicas dan pautas valiosas para discernir qué tipo de partículas son las más viables.

Así pues, la determinación de la naturaleza de la materia invisible es una de las cuestiones más importantes que ocupan a la astrofísica, la cosmología y la física de partículas en la actualidad.  

 

 

 

Publicado en Tecnologia

• Rodrigo Gómez y Miguel Marcos Puente, de la ENEO de la UNAM, investigan fenómenos biológicos, sociales y psicológicos de los astronautas en condiciones de microgravedad

• Es un proyecto vanguardista de relevancia internacional, de la talla de estudios elaborados por organismos como la NASA, la Agencia Espacial Europea o la Agencia Espacial Rusa, señala el rector Enrique Graue en la presentación del texto

• La publicación es editada por la UNAM, la Agencia Espacial Mexicana y el Conacyt.

El verdadero viaje inicia en este libro. El conocimiento, la investigación y la iniciativa de un par de egresados de la Escuela Nacional de Enfermería y Obstetricia (ENEO) de la UNAM han logrado forjar los primeros pasos para llevar su especialidad fuera de la Tierra.

Con estricta argumentación científica y de vanguardia, Rodrigo Gómez Ayala y Miguel Marcos Puente Durán presentaron, en formato físico y digital, “Enfermería Espacial”, libro que emprende el abordaje teórico del cuidado de personas durante estancias espaciales prolongadas.

Es una perspectiva de la enfermería para acercarse a los sistemas de actuación clínica antes, durante y después del viaje espacial. El objetivo del texto es proponer e implementar una valoración sistematizada (realizada desde el enfoque de atención sanitaria del profesional de enfermería) en los astronautas, cuyas necesidades básicas se ven alteradas por las condiciones de microgravedad, radiación, vibración, temperatura y presión.

El libro, editado por la UNAM, la Agencia Espacial Mexicana y el Conacyt, cuenta con 19 capítulos en 242 páginas. La presentación fue escrita por el rector Enrique Graue Wiechers, y el prólogo por Linda M. H. Plush, consultora de la NASA, presidenta fundadora y directora ejecutiva de la Space Nursing Society.

“Con esta publicación se ha dado, por primera vez en la historia de la enfermería en México, un proyecto de argumentación teórica para sustentar los futuros viajes interplanetarios y las unidades médicas espaciales. El presente libro ejemplifica la obligación científica universitaria de ver hacia el futuro, generando investigaciones de la talla de aquellas elaboradas por las agencias espaciales internacionales como la NASA, la Agencia Espacial Europea o la Agencia Espacial Rusa”, refiere Graue en su escrito.

Abrochen cinturones

Esta iniciativa se reforzó ante las acciones del viaje a Marte en 2033, y México tenía que aportar algo. “Acudimos al International Astronautical Congress 2017, en donde tuvimos un acercamiento con Elon Musk (director de la compañía estadounidense SpaceX); esto hizo que quisiéramos incursionar”, recordó Gómez Ayala.

“Desde la enfermería nos dimos cuenta que había mucho por hacer en la salud de los astronautas, de ahí que empezáramos a hacer investigación, con la base de datos de la NASA y la Agencia Espacial Rusa”, dijo.

Durante el congreso, añadió Puente Durán, “vimos que había mucha área de la salud, pero ninguna especializada en enfermería, por lo que decidimos que era momento de unirla con el espacio”.

Para su estudio, los universitarios dividieron las necesidades de los astronautas en biológicas, ecológicas y sociales. Y en el ámbito temporal, contemplaron tres momentos: antes, durante y después del viaje.

“El ‘antes’ es muy parecido a la preparación física de un atleta; el ‘durante’ se asemeja a un paciente hipersedentario que está en cama y sufre rabdomiolisis, sarcopenia y osteopenia; y el ‘después’ es más cercano a un adulto mayor con descalcificación y en rehabilitación. La microgravedad afecta sobre todo los huesos y los músculos”, explicó Gómez Ayala.

El libro fue presentado en el Tercer Congreso de Medicina Espacial, en Puebla. “Lo que sigue es ponerlo a prueba, hacerlo práctico en una misión análoga para verificar qué aspectos chocan con la física real. Además, pretendemos estudiar una maestría en el King’s College de Reino Unido para seguir capacitándonos y aportar más”, compartió.

Los egresados de la ENEO estimaron que si evoluciona el proyecto, podría despuntar en un futuro no lejano hacia un plan práctico de atención de cuidados de enfermería en una misión espacial.

Para esta investigación se consultaron diversas fuentes bibliográficas científicas que dan sustento a la propuesta. “Enfermería espacial” aborda de manera general diferentes tópicos relacionados con dicha especialidad y con el astronauta.

 

 

Publicado en Ciencia

NEFER, proyecto a cargo de Margarita Rosado, del Instituto de Astronomía, es un espectrómetro 2D de alta resolución integrado al espectrómetro OSIRIS del Gran Telescopio Canarias, España

El instrumento está diseñado principalmente para observar la emisión y velocidades del medio interestelar de nuestra galaxia y de galaxias externas.

La UNAM ahora escruta más allá de la Tierra con NEFER (Nuevo Espectrómetro Fabry-Perot de Extrema Resolución), instrumento 2D de alta resolución, integrado al espectrómetro OSIRIS del Gran Telescopio Canarias (GTC), España, el más grande del mundo, con un diámetro de 10.4 metros.

NEFER, proyecto conjunto entre la Universidad Nacional, el Laboratoire d’Astrophysique de Marseille, en Francia, y el Instituto de Astrofísica de Canarias, es el instrumento ideal para estudiar los procesos dinámicos y las colisiones en las galaxias, incluidas la formación estelar en ellas y la distribución de materia oscura, explicó Margarita Rosado, del Instituto de Astronomía (IA) de la UNAM y responsable del proyecto internacional.

“Es un instrumento que produce mapas bidimensionales de intensidades y velocidades de objetos astronómicos extendidos, diseñado principalmente para observar la emisión y las velocidades del medio interestelar de nuestra galaxia y de galaxias externas. Su núcleo es un interferómetro de fabry-perot de barrido, una técnica óptica conocida y de mucha tradición en el IA, en donde se ha usado en varios instrumentos”.

La UNAM, continuó Rosado, tiene una asociación con el GTC. “Los científicos mexicanos participamos y podemos observar a través de él; en el GTC hay varios instrumentos y yo ideé desarrollar el NEFER para emprender estudios de cinemática de objetos extendidos”.

Universo auriazul

NEFER es resultado de una colaboración encabezada por Margarita Rosado e integrantes del equipo denominado PUMA del IA: Abel Bernal y Luis Artemio Martínez, con contribuciones de Philippe Amram y Benoit Epinat, del Laboratoire d’Astrophysique de Marseille, así como de John Beckman y Joan Font, del Instituto de Astrofísica de Canarias.

GTC es el telescopio óptico más grande del mundo, se encuentra en la isla de La Palma, Canarias. Del 11 al 15 de diciembre de 2017 se le concedió a NEFER tiempo técnico para incorporar sus componentes ópticas, mecánicas y electrónicas a OSIRIS.

Se demostró que la inclusión de NEFER no alteró la operación nocturna de OSIRIS en sus observaciones astronómicas ya planeadas. Esta parte del programa fue tan exitosa que la dirección del GTC decidió dar al Nuevo Espectrómetro Fabry-Perot de Extrema Resolución un tiempo corto adicional para observar un objeto celeste que servirá para evaluar su desempeño en las observaciones astronómicas.

“Este tipo de instrumentos son muy poderosos y hemos sido pioneros, en una época en que estos datos tridimensionales y cubos de datos forman parte de la espectroscopía integral de campo, que es una rama emergente, y nosotros tenemos gran experiencia y tradición, por eso los marselleses, los mismos españoles y un grupo de canadienses están interesados en asociarse con nosotros para tener acceso a nuestras observaciones”, comentó Rosado.

Los que sigue, concluyó, es caracterizar y estudiar a fondo la sensibilidad límite del instrumento, y ofrecerlo a la comunidad científica. La fase dos será integrar un detector más grande y un contador de fotones para hacer a NEFER aún más sensible.  

Publicado en Tecnologia
Sábado, 10 Febrero 2018 06:30

¿Qué son los núcleos activos de galaxias?

Ensenada, Baja California. (Agencia Informativa Conacyt).- Investigadores del Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM), campus Ensenada, colaboran en diferentes proyectos internacionales dedicados a la observación de núcleos activos de galaxias. 

Explicar las variaciones en el brillo de este tipo de objetos, así como realizar aportaciones —en conjunto con astrónomos teóricos— a los modelos unificados que describen su estructura, son algunos de los objetivos que persiguen los astrónomos de la UNAM.

En entrevista con la Agencia Informativa Conacyt, el doctor David Hiriart, investigador del IA-UNAM, campus Ensenada, relató que las galaxias activas comenzaron a estudiarse desde el siglo XIX, cuando se consideraban estrellas variables.

“Tienen alta luminosidad, su emisión es no estelar, varían mucho, tienen jets y líneas de emisión —las estrellas solo tienen líneas de absorción—, este grupo de galaxias se conoce como galaxias activas; otras galaxias no presentan estas características”, describió.

Agregó que en las galaxias activas, la mayor parte de la energía emitida proviene del núcleo y su variación es muy rápida, por lo que se estima que el tamaño del núcleo es pequeño, en comparación con el tamaño total de la galaxia.

“Si la mínima variación de luminosidad ocurre en un día, el tamaño es del orden de un día luz, por esta razón es importante medir las variaciones en su luminosidad”, subrayó el doctor Hiriart.

Expuso que en el centro de la galaxia hay un hoyo negro supermasivo que atrae el material a su alrededor y dicho material forma un jet.

“Las líneas magnéticas a lo largo del jet atrapan cargas eléctricas, particularmente electrones, que en su movimiento producen radiación en el radio y, cuando los electrones son muy energéticos, en el óptico; esta radiación se conoce como radiación sincrotrón”, explicó.

Indicó que el hoyo negro concentra una altísima cantidad de energía potencial gravitacional que se libera cuando cae en él la materia y es por ello que los núcleos activos de galaxias concentran tanta energía, lo que hace posible observarlos aunque sean objetos lejanos a la Tierra.

Observación de blazares

Desde 2008, el doctor David Hiriart colabora en un proyecto de investigación internacional para observar núcleos galácticos activos, lo que implica realizar observaciones frecuentes desde el Observatorio Astronómico Nacional Sierra de San Pedro Mártir (OAN SPM), utilizando el telescopio con espejo de 84 centímetros de diámetro.

Especificó que son 37 objetos, denominados blazares, los que se monitorean como parte del proyecto, con la colaboración de astrónomos de todas las regiones del mundo para mantener observaciones continuas.

“Cada mes observamos estos blazares, que son objetos bien brillantes, porque el telescopio es de tamaño modesto. Hacemos estas observaciones y colaboramos con un grupo internacional llamado Whole Earth Blazar Telescope (WEBT). En el grupo se tienen también datos del radio, de rayos gamma y otras regiones del espectro, ponemos juntos todos los datos, los interpretamos y los resultados de estos estudios se presentan en publicaciones y congresos internacionales”, comentó.

El investigador mencionó que desde el OAN SPM no solamente se monitorea el brillo de los blazares sino también su polarización y para ello utilizan un polarímetro, instrumento que fue construido en el mismo instituto.

Modelos unificados

La doctora Elena Jiménez Bailón, es astrónoma observacional del IA-UNAM, campus Ensenada, especializada en el estudio de la luz emitida en rayos X, quien colabora en un proyecto de nivel internacional para hacer aportaciones a los modelos unificados de los núcleos activos de galaxias.

Doctora Elena Jiménez Bailón.En entrevista con la Agencia Informativa Conacyt, explicó que, aunque su estructura no se ha podido observar en imagen directa, existe un consenso respecto a la estructura de los núcleos activos de galaxias, que incluyen un agujero negro que tiene alrededor un disco de material plano y delgado, y alrededor hay nubes de gas muy calientes. A dicho consenso se le denomina modelos unificados.

“Hay una estructura mucho más grande que es como una dona, toroide es la palabra científica, de material mucho más frío, casi siempre hay jets, más grandes o más pequeños, en algunos objetos son partículas que salen a una velocidad descomunal, con un montón de energía y pueden alcanzar distancias mucho más grandes que la propia galaxia, que tiene una magnitud gigante; todos los tipos de núcleos galácticos activos que hay los podemos explicar de esta manera”, refirió.

Aunque la estructura de los núcleos activos de galaxias puede cambiar de tamaño de acuerdo con la masa del agujero negro que se encuentra en el centro, la estructura se mantiene con los mismos elementos y cambia su escala y línea de visión.  

Observación en rayos X

Desde hace una década, la doctora Elena Jiménez se dedica a recabar datos de una serie de núcleos activos galácticos para realizar aportaciones a los modelos unificados, en colaboración con astrónomos teóricos. 

“Uno de los trabajos que estoy haciendo es poner restricciones a una pequeña parte de este modelo, que es en la zona más cercana del disco de acreción. Nosotros lo que decimos es que arriba del disco hay unas nubes densas que están girando a gran velocidad y es algo que tratamos de probar con observaciones de rayos X”, mencionó.

Precisó que el proyecto implica conocer a profundidad la física de las nubes y hacer estudios de muestras grandes de conjuntos de núcleos galácticos activos, para comprobar si funciona en todos los casos.

La investigadora indicó que entre sus colaboradores se encuentran astrónomos mexicanos y europeos, quienes monitorean una muestra de alrededor de 20 objetos y generan datos a partir de observatorios satelitales de rayos X, como Chandra y el XMM-Newton.

“A mí los núcleos galácticos activos me parecen muy interesantes y además fundamentales porque la mayor parte de la luz del universo proviene de ellos”, finalizó.

 


Esta obra cuyo autor es Agencia Informativa Conacyt está bajo una licencia de Reconocimiento 4.0 Internacional de Creative Commons.

Publicado en Ciencia

El fenómeno ya está ocurriendo, pero también podrás verse en la noche.

Publicado en Ciencia

Después de más de 150 años se presentará un fenómeno lunar por partida triple.

Publicado en Ciencia

Miguel Alcubierre parte de la hipótesis de que la gravedad es una deformación de la geometría del espacio-tiempo y permite la expansión del universo.

Publicado en Tecnologia
logo
© 2018 La Unión de Morelos. Todos Los Derechos Reservados.